`Travelled to:`

1 × Canada

1 × Italy

1 × Portugal

1 × Spain

6 × USA

`Collaborated with:`

A.A.Shvartsman C.Moore S.Hallgren A.Kiayias P.Sniady C.Georgiou L.Engebretsen J.Holmerin A.Ta-Shma M.E.Saks D.Zuckerman L.D.Michel S.Davtyan M.Bellare S.Goldwasser C.Lund R.J.Jancewicz L.Michel M.Rötteler P.Sen S.Kentros N.C.Nicolaou A.See N.Shashidhar

`Talks about:`

vote (5) quantum (3) system (3) group (3) isomorph (2) termin (2) comput (2) optic (2) graph (2) scan (2)

## Person: Alexander Russell

### DBLP: Russell:Alexander

### Contributed to:

### Wrote 10 papers:

- SAC-2013-JancewiczKMRS #execution
- Malicious takeover of voting systems: arbitrary code execution on optical scan voting terminals (RJJ, AK, LDM, AR, AAS), pp. 1816–1823.
- SAC-2012-DavtyanKMRS #encryption #using
- Integrity of electronic voting systems: fallacious use of cryptography (SD, AK, LM, AR, AAS), pp. 1486–1493.
- SAC-2009-DavtyanKKMNRSSS
- Taking total control of voting systems: firmware manipulations on an optical scan voting terminal (SD, SK, AK, LDM, NCN, AR, AS, NS, AAS), pp. 2049–2053.
- STOC-2007-MooreRS #algorithm #graph #morphism #on the #quantum
- On the impossibility of a quantum sieve algorithm for graph isomorphism (CM, AR, PS), pp. 536–545.
- STOC-2006-HallgrenMRRS #graph #morphism #quantum
- Limitations of quantum coset states for graph isomorphism (SH, CM, MR, AR, PS), pp. 604–617.
- STOC-2003-GeorgiouRS #scheduling
- Work-competitive scheduling for cooperative computing with dynamic groups (CG, AR, AAS), pp. 251–258.
- ICALP-2002-EngebretsenHR #equation #finite
- Inapproximability Results for Equations over Finite Groups (LE, JH, AR), pp. 73–84.
- STOC-2000-HallgrenRT #quantum #re-engineering #using
- Normal subgroup reconstruction and quantum computation using group representations (SH, AR, ATS), pp. 627–635.
- STOC-1999-RussellSZ #bound
- Lower Bounds for Leader Election and Collective Coin-Flipping in the Perfect Information Model (AR, MES, DZ), pp. 339–347.
- STOC-1994-BellareGLR #approximate #performance #probability #proving
- Efficient probabilistic checkable proofs and applications to approximation (MB, SG, CL, AR), p. 820.