BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Finland
1 × France
1 × Germany
4 × USA
Collaborated with:
D.Schuurmans T.Xia C.Lee R.Greiner F.Jiao L.Cheng S.Zhai M.Tan L.Guo L.Zheng Y.Liu F.Peng Y.Zhao G.Haffari Y.Wang G.Mori S.Wang
Talks about:
model (4) direct (3) boost (3) bayesian (2) regular (2) inform (2) optim (2) learn (2) rank (2) incomplet (1)

Person: Shaojun Wang

DBLP DBLP: Wang:Shaojun

Contributed to:

KDD 20142014
KDD 20132013
KDD 20092009
ICML 20082008
ICML 20062006
ICML 20052005
ICML 20032003

Wrote 8 papers:

KDD-2014-ZhaiXW #multi #optimisation
A multi-class boosting method with direct optimization (SZ, TX, SW), pp. 273–282.
KDD-2013-TanXGW #learning #metric #modelling #optimisation #rank #ranking
Direct optimization of ranking measures for learning to rank models (MT, TX, LG, SW), pp. 856–864.
KDD-2009-ZhengWLL
Information theoretic regularization for semi-supervised boosting (LZ, SW, YL, CHL), pp. 1017–1026.
ICML-2008-HaffariWWMJ
Boosting with incomplete information (GH, YW, SW, GM, FJ), pp. 368–375.
ICML-2006-LeeGW #classification #using
Using query-specific variance estimates to combine Bayesian classifiers (CHL, RG, SW), pp. 529–536.
ICML-2005-ChengJSW #image #modelling
Variational Bayesian image modelling (LC, FJ, DS, SW), pp. 129–136.
ICML-2005-WangWGSC #markov #modelling #random #semantics
Exploiting syntactic, semantic and lexical regularities in language modeling via directed Markov random fields (SW, SW, RG, DS, LC), pp. 948–955.
ICML-2003-WangSPZ #learning #modelling #principle
Learning Mixture Models with the Latent Maximum Entropy Principle (SW, DS, FP, YZ), pp. 784–791.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.