Proceedings of the 25th International Conference on Machine Learning
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter

William W. Cohen, Andrew McCallum, Sam T. Roweis
Proceedings of the 25th International Conference on Machine Learning
ICML, 2008.

KER
DBLP
Scholar
Full names Links ISxN
@proceedings{ICML-2008,
	address       = "Helsinki, Finland",
	editor        = "William W. Cohen and Andrew McCallum and Sam T. Roweis",
	isbn          = "978-1-60558-205-4",
	publisher     = "{ACM}",
	series        = "{ACM International Conference Proceeding Series}",
	title         = "{Proceedings of the 25th International Conference on Machine Learning}",
	volume        = 307,
	year          = 2008,
}

Contents (157 items)

ICML-2008-AdamsS #modelling #parametricity #process
Gaussian process product models for nonparametric nonstationarity (RPA, OS), pp. 1–8.
ICML-2008-AllauzenMT #kernel #predict #sequence
Sequence kernels for predicting protein essentiality (CA, MM, AT), pp. 9–16.
ICML-2008-AnWSWCD #analysis #image #kernel #multi #process
Hierarchical kernel stick-breaking process for multi-task image analysis (QA, CW, IS, EW, LC, DBD), pp. 17–24.
ICML-2008-Bach #graph #kernel
Graph kernels between point clouds (FRB), pp. 25–32.
ICML-2008-Bach08a #consistency #estimation #named
Bolasso: model consistent Lasso estimation through the bootstrap (FRB), pp. 33–40.
ICML-2008-BarrettN #learning #multi #policy
Learning all optimal policies with multiple criteria (LB, SN), pp. 41–47.
ICML-2008-BergeronZBB #multi #ranking
Multiple instance ranking (CB, JZ, CMB, KPB), pp. 48–55.
ICML-2008-BickelBLS #learning #multi
Multi-task learning for HIV therapy screening (SB, JB, TL, TS), pp. 56–63.
ICML-2008-BiggsGV #matrix
Nonnegative matrix factorization via rank-one downdate (MB, AG, SAV), pp. 64–71.
ICML-2008-BowlingJBS #evaluation #game studies
Strategy evaluation in extensive games with importance sampling (MHB, MJ, NB, DS), pp. 72–79.
ICML-2008-BryanS #learning
Actively learning level-sets of composite functions (BB, JGS), pp. 80–87.
ICML-2008-CaronD #parametricity
Sparse Bayesian nonparametric regression (FC, AD), pp. 88–95.
ICML-2008-CaruanaKY #empirical #evaluation #learning
An empirical evaluation of supervised learning in high dimensions (RC, NK, AY), pp. 96–103.
ICML-2008-CatanzaroSK #classification #performance
Fast support vector machine training and classification on graphics processors (BCC, NS, KK), pp. 104–111.
ICML-2008-Cayton #nearest neighbour #performance #retrieval
Fast nearest neighbor retrieval for bregman divergences (LC), pp. 112–119.
ICML-2008-CevikalpTP #classification
Nearest hyperdisk methods for high-dimensional classification (HC, BT, RP), pp. 120–127.
ICML-2008-ChenM #learning
Learning to sportscast: a test of grounded language acquisition (DLC, RJM), pp. 128–135.
ICML-2008-ChenY #kernel
Training SVM with indefinite kernels (JC, JY), pp. 136–143.
ICML-2008-CoatesAN #learning #multi
Learning for control from multiple demonstrations (AC, PA, AYN), pp. 144–151.
ICML-2008-ColemanSW #clustering #consistency
Spectral clustering with inconsistent advice (TC, JS, AW), pp. 152–159.
ICML-2008-CollobertW #architecture #learning #multi #natural language #network
A unified architecture for natural language processing: deep neural networks with multitask learning (RC, JW), pp. 160–167.
ICML-2008-Corrada-EmmanuelS #estimation #fault #geometry #low level #precise
Autonomous geometric precision error estimation in low-level computer vision tasks (ACE, HJS), pp. 168–175.
ICML-2008-CortesMPR #algorithm
Stability of transductive regression algorithms (CC, MM, DP, AR), pp. 176–183.
ICML-2008-CrammerTP #clustering
A rate-distortion one-class model and its applications to clustering (KC, PPT, FCNP), pp. 184–191.
ICML-2008-CunninghamSS #estimation #performance #process
Fast Gaussian process methods for point process intensity estimation (JPC, KVS, MS), pp. 192–199.
ICML-2008-DaiYXY #clustering #self
Self-taught clustering (WD, QY, GRX, YY), pp. 200–207.
ICML-2008-DasguptaH #learning
Hierarchical sampling for active learning (SD, DH), pp. 208–215.
ICML-2008-DekelS #learning
Learning to classify with missing and corrupted features (OD, OS), pp. 216–223.
ICML-2008-DembczynskiKS
Maximum likelihood rule ensembles (KD, WK, RS), pp. 224–231.
ICML-2008-DickHS #infinity #learning #semistructured data
Learning from incomplete data with infinite imputations (UD, PH, TS), pp. 232–239.
ICML-2008-DiukCL #learning #object-oriented #performance #representation
An object-oriented representation for efficient reinforcement learning (CD, AC, MLL), pp. 240–247.
ICML-2008-DonmezC #learning #optimisation #rank #reduction
Optimizing estimated loss reduction for active sampling in rank learning (PD, JGC), pp. 248–255.
ICML-2008-DoshiPR #learning #using
Reinforcement learning with limited reinforcement: using Bayes risk for active learning in POMDPs (FD, JP, NR), pp. 256–263.
ICML-2008-DredzeCP #classification #linear
Confidence-weighted linear classification (MD, KC, FP), pp. 264–271.
ICML-2008-DuchiSSC #learning #performance
Efficient projections onto the l1-ball for learning in high dimensions (JCD, SSS, YS, TC), pp. 272–279.
ICML-2008-DugasG
Pointwise exact bootstrap distributions of cost curves (CD, DG), pp. 280–287.
ICML-2008-DundarWLSR #case study #classification #detection
Polyhedral classifier for target detection: a case study: colorectal cancer (MD, MW, SL, MS, VCR), pp. 288–295.
ICML-2008-EpshteynVD #learning
Active reinforcement learning (AE, AV, GD), pp. 296–303.
ICML-2008-FinleyJ
Training structural SVMs when exact inference is intractable (TF, TJ), pp. 304–311.
ICML-2008-FoxSJW #persistent
An HDP-HMM for systems with state persistence (EBF, EBS, MIJ, ASW), pp. 312–319.
ICML-2008-FrancS #algorithm
Optimized cutting plane algorithm for support vector machines (VF, SS), pp. 320–327.
ICML-2008-FrancLM #fault
Stopping conditions for exact computation of leave-one-out error in support vector machines (VF, PL, KRM), pp. 328–335.
ICML-2008-FrankMP #learning
Reinforcement learning in the presence of rare events (JF, SM, DP), pp. 336–343.
ICML-2008-GomesWP #bound #memory management #modelling #topic
Memory bounded inference in topic models (RG, MW, PP), pp. 344–351.
ICML-2008-GonenA #kernel #learning #locality #multi
Localized multiple kernel learning (MG, EA), pp. 352–359.
ICML-2008-GordonGM #game studies #learning
No-regret learning in convex games (GJG, AG, CM), pp. 360–367.
ICML-2008-HaffariWWMJ
Boosting with incomplete information (GH, YW, SW, GM, FJ), pp. 368–375.
ICML-2008-HamL #analysis #learning
Grassmann discriminant analysis: a unifying view on subspace-based learning (JH, DDL), pp. 376–383.
ICML-2008-HeigoldDSN #evaluation #recognition #speech
Modified MMI/MPE: a direct evaluation of the margin in speech recognition (GH, TD, RS, HN), pp. 384–391.
ICML-2008-HellerWG #modelling #statistics
Statistical models for partial membership (KAH, SW, ZG), pp. 392–399.
ICML-2008-HoiJ #kernel #learning
Active kernel learning (SCHH, RJ), pp. 400–407.
ICML-2008-HsiehCLKS #coordination #linear #scalability
A dual coordinate descent method for large-scale linear SVM (CJH, KWC, CJL, SSK, SS), pp. 408–415.
ICML-2008-HuynhM #learning #logic #markov #network #parametricity
Discriminative structure and parameter learning for Markov logic networks (TNH, RJM), pp. 416–423.
ICML-2008-HyvarinenSH #modelling
Causal modelling combining instantaneous and lagged effects: an identifiable model based on non-Gaussianity (AH, SS, POH), pp. 424–431.
ICML-2008-KakadeST #algorithm #multi #online #performance #predict
Efficient bandit algorithms for online multiclass prediction (SMK, SSS, AT), pp. 440–447.
ICML-2008-KarlenWEC #scalability
Large scale manifold transduction (MK, JW, AE, RC), pp. 448–455.
ICML-2008-KerstingD #parametricity #policy #relational
Non-parametric policy gradients: a unified treatment of propositional and relational domains (KK, KD), pp. 456–463.
ICML-2008-KirshnerP #dependence #using
ICA and ISA using Schweizer-Wolff measure of dependence (SK, BP), pp. 464–471.
ICML-2008-KlementievRS #modelling #rank
Unsupervised rank aggregation with distance-based models (AK, DR, KS), pp. 472–479.
ICML-2008-KohliSRKT #multi #on the
On partial optimality in multi-label MRFs (PK, AS, CR, VK, PHST), pp. 480–487.
ICML-2008-KolterCNGD #learning #programming
Space-indexed dynamic programming: learning to follow trajectories (JZK, AC, AYN, YG, CD), pp. 488–495.
ICML-2008-KondorB #graph
The skew spectrum of graphs (RK, KMB), pp. 496–503.
ICML-2008-KuzelkaZ #estimation #first-order #performance
Fast estimation of first-order clause coverage through randomization and maximum likelihood (OK, FZ), pp. 504–511.
ICML-2008-LanLQML #learning #rank
Query-level stability and generalization in learning to rank (YL, TYL, TQ, ZM, HL), pp. 512–519.
ICML-2008-Landwehr #modelling #process
Modeling interleaved hidden processes (NL), pp. 520–527.
ICML-2008-LangfordSW
Exploration scavenging (JL, ALS, JW), pp. 528–535.
ICML-2008-LarochelleB #classification #strict #using
Classification using discriminative restricted Boltzmann machines (HL, YB), pp. 536–543.
ICML-2008-LazaricRB #learning
Transfer of samples in batch reinforcement learning (AL, MR, AB), pp. 544–551.
ICML-2008-LebanonZ #modelling
Local likelihood modeling of temporal text streams (GL, YZ), pp. 552–559.
ICML-2008-Li #approximate #comparison #difference #linear #worst-case
A worst-case comparison between temporal difference and residual gradient with linear function approximation (LL), pp. 560–567.
ICML-2008-LiLW #framework #learning #self #what
Knows what it knows: a framework for self-aware learning (LL, MLL, TJW), pp. 568–575.
ICML-2008-LiLT #classification #constraints #programming
Pairwise constraint propagation by semidefinite programming for semi-supervised classification (ZL, JL, XT), pp. 576–583.
ICML-2008-LiangJ #analysis #generative #pseudo
An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators (PL, MIJ), pp. 584–591.
ICML-2008-LiangDK #compilation
Structure compilation: trading structure for features (PL, HDI, DK), pp. 592–599.
ICML-2008-LoeffFR #approximate #learning #named
ManifoldBoost: stagewise function approximation for fully-, semi- and un-supervised learning (NL, DAF, DR), pp. 600–607.
ICML-2008-LongS #classification #random
Random classification noise defeats all convex potential boosters (PML, RAS), pp. 608–615.
ICML-2008-LuPV #analysis #component #multi
Uncorrelated multilinear principal component analysis through successive variance maximization (HL, KNP, ANV), pp. 616–623.
ICML-2008-LuLHE #framework #kernel
A reproducing kernel Hilbert space framework for pairwise time series distances (ZL, TKL, YH, DE), pp. 624–631.
ICML-2008-MakinoT #network #online
On-line discovery of temporal-difference networks (TM, TT), pp. 632–639.
ICML-2008-MartinsFASX #kernel
Nonextensive entropic kernels (AFTM, MATF, PMQA, NAS, EPX), pp. 640–647.
ICML-2008-MehtaRTD #automation
Automatic discovery and transfer of MAXQ hierarchies (NM, SR, PT, TGD), pp. 648–655.
ICML-2008-MekaJCD #learning #online #rank
Rank minimization via online learning (RM, PJ, CC, ISD), pp. 656–663.
ICML-2008-MeloMR #analysis #approximate #learning
An analysis of reinforcement learning with function approximation (FSM, SPM, MIR), pp. 664–671.
ICML-2008-MnihSA #empirical
Empirical Bernstein stopping (VM, CS, JYA), pp. 672–679.
ICML-2008-KumarT #estimation
Efficiently solving convex relaxations for MAP estimation (MPK, PHST), pp. 680–687.
ICML-2008-NarayanamurthyR #markov #on the #process #symmetry
On the hardness of finding symmetries in Markov decision processes (SMN, BR), pp. 688–695.
ICML-2008-Nijssen #classification
Bayes optimal classification for decision trees (SN), pp. 696–703.
ICML-2008-NowozinB #approach #learning
A decoupled approach to exemplar-based unsupervised learning (SN, GHB), pp. 704–711.
ICML-2008-OBrienGG #classification #multi #probability
Cost-sensitive multi-class classification from probability estimates (DBO, MRG, RMG), pp. 712–719.
ICML-2008-OrabonaKC #bound #kernel
The projectron: a bounded kernel-based Perceptron (FO, JK, BC), pp. 720–727.
ICML-2008-OuyangG #learning #ranking
Learning dissimilarities by ranking: from SDP to QP (HO, AGG), pp. 728–735.
ICML-2008-PaiementGBE #distance
A distance model for rhythms (JFP, YG, SB, DE), pp. 736–743.
ICML-2008-PalatucciC #classification #on the #scalability
On the chance accuracies of large collections of classifiers (MP, AC), pp. 744–751.
ICML-2008-ParrLTPL #analysis #approximate #feature model #learning #linear #modelling
An analysis of linear models, linear value-function approximation, and feature selection for reinforcement learning (RP, LL, GT, CPW, MLL), pp. 752–759.
ICML-2008-PuolamakiAK #learning #query
Learning to learn implicit queries from gaze patterns (KP, AA, SK), pp. 760–767.
ICML-2008-QiLDC #multi #process
Multi-task compressive sensing with Dirichlet process priors (YQ, DL, DBD, LC), pp. 768–775.
ICML-2008-QuadriantoSCL
Estimating labels from label proportions (NQ, AJS, TSC, QVL), pp. 776–783.
ICML-2008-RadlinskiKJ #learning #multi #ranking
Learning diverse rankings with multi-armed bandits (FR, RK, TJ), pp. 784–791.
ICML-2008-RanzatoS #documentation #learning #network
Semi-supervised learning of compact document representations with deep networks (MR, MS), pp. 792–799.
ICML-2008-RavikumarAW #convergence #linear #message passing #source code
Message-passing for graph-structured linear programs: proximal projections, convergence and rounding schemes (PDR, AA, MJW), pp. 800–807.
ICML-2008-RaykarKBDR #automation #feature model #induction #learning #multi
Bayesian multiple instance learning: automatic feature selection and inductive transfer (VCR, BK, JB, MD, RBR), pp. 808–815.
ICML-2008-ReisingerSM #kernel #learning #online
Online kernel selection for Bayesian reinforcement learning (JR, PS, RM), pp. 816–823.
ICML-2008-RenDC #process
The dynamic hierarchical Dirichlet process (LR, DBD, LC), pp. 824–831.
ICML-2008-RishGCPG #linear #modelling #reduction
Closed-form supervised dimensionality reduction with generalized linear models (IR, GG, GAC, FP, GJG), pp. 832–839.
ICML-2008-Rosset #kernel
Bi-level path following for cross validated solution of kernel quantile regression (SR), pp. 840–847.
ICML-2008-RothF #algorithm #linear #modelling #performance
The Group-Lasso for generalized linear models: uniqueness of solutions and efficient algorithms (VR, BF), pp. 848–855.
ICML-2008-SahbiARK #kernel #recognition #robust #using
Robust matching and recognition using context-dependent kernels (HS, JYA, JR, RK), pp. 856–863.
ICML-2008-SakumaKW #learning #privacy
Privacy-preserving reinforcement learning (JS, SK, RNW), pp. 864–871.
ICML-2008-SalakhutdinovM #analysis #network #on the
On the quantitative analysis of deep belief networks (RS, IM), pp. 872–879.
ICML-2008-SalakhutdinovM08a #markov #matrix #monte carlo #probability #using
Bayesian probabilistic matrix factorization using Markov chain Monte Carlo (RS, AM), pp. 880–887.
ICML-2008-SarawagiG
Accurate max-margin training for structured output spaces (SS, RG), pp. 888–895.
ICML-2008-SarkarMP #graph #incremental #performance #proximity #scalability
Fast incremental proximity search in large graphs (PS, AWM, AP), pp. 896–903.
ICML-2008-Schnall-LevinCB #algorithm #design #framework
Inverting the Viterbi algorithm: an abstract framework for structure design (MSL, LC, BB), pp. 904–911.
ICML-2008-SeegerN #design
Compressed sensing and Bayesian experimental design (MWS, HN), pp. 912–919.
ICML-2008-SeldinT #category theory #classification #clustering #multi
Multi-classification by categorical features via clustering (YS, NT), pp. 920–927.
ICML-2008-Shalev-ShwartzS #dependence #optimisation #set
SVM optimization: inverse dependence on training set size (SSS, NS), pp. 928–935.
ICML-2008-ShiBY #learning #modelling #using
Data spectroscopy: learning mixture models using eigenspaces of convolution operators (TS, MB, BY), pp. 936–943.
ICML-2008-ShinK #kernel
A generalization of Haussler’s convolution kernel: mapping kernel (KS, TK), pp. 944–951.
ICML-2008-ShringarpureX #named #search-based
mStruct: a new admixture model for inference of population structure in light of both genetic admixing and allele mutations (SS, EPX), pp. 952–959.
ICML-2008-SiggB
Expectation-maximization for sparse and non-negative PCA (CDS, JMB), pp. 960–967.
ICML-2008-SilverSM #learning
Sample-based learning and search with permanent and transient memories (DS, RSS, MM), pp. 968–975.
ICML-2008-SindhwaniR #learning #multi
An RKHS for multi-view learning and manifold co-regularization (VS, DSR), pp. 976–983.
ICML-2008-SokolovskaCY #learning #modelling #probability
The asymptotics of semi-supervised learning in discriminative probabilistic models (NS, OC, FY), pp. 984–991.
ICML-2008-SongZSGS #estimation #kernel
Tailoring density estimation via reproducing kernel moment matching (LS, XZ, AJS, AG, BS), pp. 992–999.
ICML-2008-SorokinaCRF #detection #interactive #statistics
Detecting statistical interactions with additive groves of trees (DS, RC, MR, DF), pp. 1000–1007.
ICML-2008-SriperumbudurLL #classification #kernel #metric
Metric embedding for kernel classification rules (BKS, OAL, GRGL), pp. 1008–1015.
ICML-2008-SuZLM #learning #network #parametricity
Discriminative parameter learning for Bayesian networks (JS, HZ, CXL, SM), pp. 1016–1023.
ICML-2008-SunJY #analysis #canonical #correlation
A least squares formulation for canonical correlation analysis (LS, SJ, JY), pp. 1024–1031.
ICML-2008-SyedBS #learning #linear #programming #using
Apprenticeship learning using linear programming (US, MHB, RES), pp. 1032–1039.
ICML-2008-SzafranskiGR #kernel #learning
Composite kernel learning (MS, YG, AR), pp. 1040–1047.
ICML-2008-SzitaL #approach
The many faces of optimism: a unifying approach (IS, AL), pp. 1048–1055.
ICML-2008-TakedaS
nu-support vector machine as conditional value-at-risk minimization (AT, MS), pp. 1056–1063.
ICML-2008-Tieleman #approximate #strict #using
Training restricted Boltzmann machines using approximations to the likelihood gradient (TT), pp. 1064–1071.
ICML-2008-UenoKMMI #approach #evaluation #policy #statistics
A semiparametric statistical approach to model-free policy evaluation (TU, MK, TM, SiM, SI), pp. 1072–1079.
ICML-2008-UrtasunFGPDL #modelling
Topologically-constrained latent variable models (RU, DJF, AG, JP, TD, NDL), pp. 1080–1087.
ICML-2008-GaelSTG #infinity #markov
Beam sampling for the infinite hidden Markov model (JVG, YS, YWT, ZG), pp. 1088–1095.
ICML-2008-VincentLBM #robust
Extracting and composing robust features with denoising autoencoders (PV, HL, YB, PAM), pp. 1096–1103.
ICML-2008-VovkZ #game studies #predict
Prediction with expert advice for the Brier game (VV, FZ), pp. 1104–1111.
ICML-2008-WalderKS #multi #process
Sparse multiscale gaussian process regression (CW, KIK, BS), pp. 1112–1119.
ICML-2008-WangM #analysis #using
Manifold alignment using Procrustes analysis (CW, SM), pp. 1120–1127.
ICML-2008-WangYQZ #analysis #component #composition #feature model
Dirichlet component analysis: feature extraction for compositional data (HYW, QY, HQ, HZ), pp. 1128–1135.
ICML-2008-WangYZ #adaptation #kernel #learning #multi
Adaptive p-posterior mixture-model kernels for multiple instance learning (HYW, QY, HZ), pp. 1136–1143.
ICML-2008-WangJC #graph
Graph transduction via alternating minimization (JW, TJ, SFC), pp. 1144–1151.
ICML-2008-WangZ #learning #multi #on the
On multi-view active learning and the combination with semi-supervised learning (WW, ZHZ), pp. 1152–1159.
ICML-2008-WeinbergerS #distance #implementation #learning #metric #performance
Fast solvers and efficient implementations for distance metric learning (KQW, LKS), pp. 1160–1167.
ICML-2008-WestonRC #learning
Deep learning via semi-supervised embedding (JW, FR, RC), pp. 1168–1175.
ICML-2008-WingateS #exponential #learning #predict #product line
Efficiently learning linear-linear exponential family predictive representations of state (DW, SPS), pp. 1176–1183.
ICML-2008-WolfeHK #dataset #distributed #scalability
Fully distributed EM for very large datasets (JW, AH, DK), pp. 1184–1191.
ICML-2008-XiaLWZL #algorithm #approach #learning #rank
Listwise approach to learning to rank: theory and algorithm (FX, TYL, JW, WZ, HL), pp. 1192–1199.
ICML-2008-YamanWLd #approximate #modelling
Democratic approximation of lexicographic preference models (FY, TJW, MLL, Md), pp. 1200–1207.
ICML-2008-YaoL #difference #learning
Preconditioned temporal difference learning (HY, ZQL), pp. 1208–1215.
ICML-2008-YuVGS #approach #optimisation
A quasi-Newton approach to non-smooth convex optimization (JY, SVNV, SG, NNS), pp. 1216–1223.
ICML-2008-YueJ #predict #set #using
Predicting diverse subsets using structural SVMs (YY, TJ), pp. 1224–1231.
ICML-2008-ZhangTK #analysis #approximate #fault #rank
Improved Nyström low-rank approximation and error analysis (KZ, IWT, JTK), pp. 1232–1239.
ICML-2008-ZhangDT #algorithm
Estimating local optimums in EM algorithm over Gaussian mixture model (ZZ, BTD, AKHT), pp. 1240–1247.
ICML-2008-ZhaoWZ #clustering #multi #performance
Efficient multiclass maximum margin clustering (BZ, FW, CZ), pp. 1248–1255.
ICML-2008-ZhuXZ #markov #network
Laplace maximum margin Markov networks (JZ, EPX, BZ), pp. 1256–1263.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.