Travelled to:
1 × Austria
1 × Belgium
1 × Brazil
1 × Cyprus
1 × Greece
1 × Poland
2 × Canada
2 × France
2 × Italy
3 × Japan
3 × USA
Collaborated with:
R.Crubillé B.Petit A.Yoshimizu C.Faggian B.Accattoli ∅ P.Baillot P.Coppola B.Valiron I.Hasuo M.Gaboardi U.Schöpp S.Martini M.Hofmann O.Laurent C.Grellois F.Gavazzo F.Breuvart M.Avanzini G.Moser D.Sangiorgi M.Alberti S.R.D.Rocca M.d.Visme D.Mazza
Talks about:
linear (7) type (7) order (6) probabilist (5) higher (5) logic (5) geometri (4) program (4) complex (4) valu (4)
Person: Ugo Dal Lago
DBLP: Lago:Ugo_Dal
Contributed to:
Wrote 28 papers:
- ICFP-2015-AvanziniLM #complexity #first-order #functional #higher-order #source code
- Analysing the complexity of functional programs: higher-order meets first-order (MA, UDL, GM), pp. 152–164.
- LICS-2015-CrubilleL #metric #reasoning
- Metric Reasoning about ?-Terms: The Affine Case (RC, UDL), pp. 633–644.
- LICS-2015-LagoFVY #parallel
- Parallelism and Synchronization in an Infinitary Context (UDL, CF, BV, AY), pp. 559–572.
- ESOP-2014-CrubilleL #bisimulation #call-by #on the #probability #λ-calculus
- On Probabilistic Applicative Bisimulation and Call-by-Value λ-Calculi (RC, UDL), pp. 209–228.
- ESOP-2014-YoshimizuHFL #higher-order #metric #proving #quantum
- Measurements in Proof Nets as Higher-Order Quantum Circuits (AY, IH, CF, UDL), pp. 371–391.
- LICS-CSL-2014-AccattoliL #invariant #reduction
- β reduction is invariant, indeed (BA, UDL), p. 10.
- LICS-CSL-2014-LagoFHY #geometry
- The geometry of synchronization (UDL, CF, IH, AY), p. 10.
- POPL-2014-LagoSA #functional #higher-order #induction #on the #probability #source code
- On coinductive equivalences for higher-order probabilistic functional programs (UDL, DS, MA), pp. 297–308.
- POPL-2013-LagoP #geometry
- The geometry of types (UDL, BP), pp. 167–178.
- CSL-2012-BaillotL #complexity #higher-order
- Higher-Order Interpretations and Program Complexity (PB, UDL), pp. 62–76.
- PPDP-2012-LagoP #call-by #dependent type #linear
- Linear dependent types in a call-by-value scenario (UDL, BP), pp. 115–126.
- PPDP-J-2012-LagoP14 #call-by #dependent type #linear
- Linear dependent types in a call-by-value scenario (UDL, BP), pp. 77–100.
- RTA-2012-AccattoliL #cost analysis #on the #reduction
- On the Invariance of the Unitary Cost Model for Head Reduction (BA, UDL), pp. 22–37.
- LICS-2011-LagoG #dependent type #linear
- Linear Dependent Types and Relative Completeness (UDL, MG), pp. 133–142.
- ESOP-2010-LagoS #functional #programming #sublinear
- Functional Programming in Sublinear Space (UDL, US), pp. 205–225.
- ICALP-v2-2009-LagoM #on the #term rewriting #λ-calculus
- On Constructor Rewrite Systems and the λ-Calculus (UDL, SM), pp. 163–174.
- TLCA-2009-LagoH #bound #linear #logic #revisited
- Bounded Linear Logic, Revisited (UDL, MH), pp. 80–94.
- CSL-2008-LagoL #game studies #linear #logic #semantics
- Quantitative Game Semantics for Linear Logic (UDL, OL), pp. 230–245.
- LICS-2007-BaillotCL #complexity #logic #reduction
- Light Logics and Optimal Reduction: Completeness and Complexity (PB, PC, UDL), pp. 421–430.
- LICS-2006-Lago #complexity #linear #logic #semantics
- Context Semantics, Linear Logic and Computational Complexity (UDL), pp. 169–178.
- LICS-2005-Lago #geometry #higher-order #linear #recursion
- The Geometry of Linear Higher-Order Recursion (UDL), pp. 366–375.
- TLCA-2005-CoppolaLR #call-by #logic #λ-calculus
- Elementary Affine Logic and the Call-by-Value λ Calculus (PC, UDL, SRDR), pp. 131–145.
- ESOP-2017-CrubilleL #metric #reasoning
- Metric Reasoning About λ-Terms: The General Case (RC, UDL), pp. 341–367.
- ESOP-2017-LagoG #monad #probability #termination #type system
- Probabilistic Termination by Monadic Affine Sized Typing (UDL, CG), pp. 393–419.
- ESOP-2019-LagoG #bisimulation #normalisation
- Effectful Normal Form Bisimulation (UDL, FG), pp. 263–292.
- POPL-2017-LagoFVY #geometry #parallel #probability #quantum
- The geometry of parallelism: classical, probabilistic, and quantum effects (UDL, CF, BV, AY), pp. 833–845.
- PPDP-2018-BreuvartL #on the #probability #λ-calculus
- On Intersection Types and Probabilistic Lambda Calculi (FB, UDL), p. 13.
- POPL-2019-LagoVMY #fault #runtime #π-calculus
- Intersection types and runtime errors in the pi-calculus (UDL, MdV, DM, AY), p. 29.