Travelled to:
1 × Austria
1 × Canada
1 × Ireland
2 × Germany
2 × Italy
3 × USA
Collaborated with:
P.Baumgartner H.Ganzinger ∅ J.C.Blanchette J.Bax A.Bentkamp V.Sofronie-Stokkermans T.Hillenbrand L.Bachmair H.Becker D.Wand S.Cruanes A.Schlichtkrull D.Traytel J.Blanchette S.Tourret P.Vukmirovic
Talks about:
superposit (8) order (6) hierarch (4) theorem (4) abelian (3) lambda (3) prove (3) free (3) theori (2) prover (2)
Person: Uwe Waldmann
DBLP: Waldmann:Uwe
Contributed to:
Wrote 14 papers:
- CADE-2015-BaumgartnerBW #named #proving #theorem proving
- Beagle — A Hierarchic Superposition Theorem Prover (PB, JB, UW), pp. 367–377.
- IJCAR-2014-BaumgartnerBW #finite #proving #quantifier #theorem proving
- Finite Quantification in Hierarchic Theorem Proving (PB, JB, UW), pp. 152–167.
- CADE-2013-BaumgartnerW #abstraction
- Hierarchic Superposition with Weak Abstraction (PB, UW), pp. 39–57.
- CADE-2009-BaumgartnerW #evolution
- Superposition and Model Evolution Combined (PB, UW), pp. 17–34.
- IJCAR-2004-GanzingerSW #composition #proving #similarity
- Modular Proof Systems for Partial Functions with Weak Equality (HG, VSS, UW), pp. 168–182.
- CADE-2003-GanzingerHW
- Superposition Modulo a Shostak Theory (HG, TH, UW), pp. 182–196.
- IJCAR-2001-Waldmann #order
- Superposition and Chaining for Totally Ordered Divisible Abelian Groups (UW), pp. 226–241.
- CADE-1998-Waldmann
- Superposition for Divisible Torsion-Free Abelian Groups (UW), pp. 144–159.
- CADE-1996-GanzingerW #monad #proving #theorem proving
- Theorem Proving in Cancellative Abelian Monoids (HG, UW), pp. 388–402.
- ALP-1992-BachmairGW #first-order #proving #theorem proving
- Theorem Proving for Hierarchic First-Order Theories (LB, HG, UW), pp. 420–434.
- CADE-2017-BeckerBWW #higher-order
- A Transfinite Knuth-Bendix Order for Lambda-Free Higher-Order Terms (HB, JCB, UW, DW), pp. 432–453.
- IJCAR-2018-BentkampBCW #higher-order #logic
- Superposition for Lambda-Free Higher-Order Logic (AB, JCB, SC, UW), pp. 28–46.
- IJCAR-2018-SchlichtkrullBT #formal method #order #proving
- Formalizing Bachmair and Ganzinger's Ordered Resolution Prover (AS, JCB, DT, UW), pp. 89–107.
- CADE-2019-BentkampBTVW
- Superposition with Lambdas (AB, JB, ST, PV, UW), pp. 55–73.