BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Austria
1 × Canada
1 × Ireland
2 × Germany
2 × Italy
3 × USA
Collaborated with:
P.Baumgartner H.Ganzinger J.C.Blanchette J.Bax A.Bentkamp V.Sofronie-Stokkermans T.Hillenbrand L.Bachmair H.Becker D.Wand S.Cruanes A.Schlichtkrull D.Traytel J.Blanchette S.Tourret P.Vukmirovic
Talks about:
superposit (8) order (6) hierarch (4) theorem (4) abelian (3) lambda (3) prove (3) free (3) theori (2) prover (2)

Person: Uwe Waldmann

DBLP DBLP: Waldmann:Uwe

Contributed to:

CADE 20152015
IJCAR 20142014
CADE 20132013
CADE 20092009
IJCAR 20042004
CADE 20032003
IJCAR 20012001
CADE 19981998
CADE 19961996
ALP 19921992
CADE 20172017
IJCAR 20182018
CADE 20192019

Wrote 14 papers:

CADE-2015-BaumgartnerBW #named #proving #theorem proving
Beagle — A Hierarchic Superposition Theorem Prover (PB, JB, UW), pp. 367–377.
IJCAR-2014-BaumgartnerBW #finite #proving #quantifier #theorem proving
Finite Quantification in Hierarchic Theorem Proving (PB, JB, UW), pp. 152–167.
CADE-2013-BaumgartnerW #abstraction
Hierarchic Superposition with Weak Abstraction (PB, UW), pp. 39–57.
CADE-2009-BaumgartnerW #evolution
Superposition and Model Evolution Combined (PB, UW), pp. 17–34.
IJCAR-2004-GanzingerSW #composition #proving #similarity
Modular Proof Systems for Partial Functions with Weak Equality (HG, VSS, UW), pp. 168–182.
Superposition Modulo a Shostak Theory (HG, TH, UW), pp. 182–196.
IJCAR-2001-Waldmann #order
Superposition and Chaining for Totally Ordered Divisible Abelian Groups (UW), pp. 226–241.
Superposition for Divisible Torsion-Free Abelian Groups (UW), pp. 144–159.
CADE-1996-GanzingerW #monad #proving #theorem proving
Theorem Proving in Cancellative Abelian Monoids (HG, UW), pp. 388–402.
ALP-1992-BachmairGW #first-order #proving #theorem proving
Theorem Proving for Hierarchic First-Order Theories (LB, HG, UW), pp. 420–434.
CADE-2017-BeckerBWW #higher-order
A Transfinite Knuth-Bendix Order for Lambda-Free Higher-Order Terms (HB, JCB, UW, DW), pp. 432–453.
IJCAR-2018-BentkampBCW #higher-order #logic
Superposition for Lambda-Free Higher-Order Logic (AB, JCB, SC, UW), pp. 28–46.
IJCAR-2018-SchlichtkrullBT #formal method #order #proving
Formalizing Bachmair and Ganzinger's Ordered Resolution Prover (AS, JCB, DT, UW), pp. 89–107.
Superposition with Lambdas (AB, JB, ST, PV, UW), pp. 55–73.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.