Travelled to:
1 × China
1 × Germany
1 × Japan
1 × Sweden
1 × Turkey
1 × United Kingdom
2 × Canada
2 × USA
Collaborated with:
P.P.Kuksa J.Kim S.Yi J.M.Rehg H.X.Pham A.Cohen M.Kim P.Huang Y.Jing R.Huang D.N.Metaxas A.Garg T.S.Huang P.W.Mirowski T.K.Ho T.Choudhury A.Pentland
Talks about:
classif (4) effici (4) learn (4) bayesian (3) spatial (3) sequenc (3) network (3) discrimin (2) recognit (2) classifi (2)
Person: Vladimir Pavlovic
DBLP: Pavlovic:Vladimir
Contributed to:
Wrote 14 papers:
- ICPR-2014-KimP #recognition
- Ancient Coin Recognition Based on Spatial Coding (JK, VP), pp. 321–326.
- ICPR-2014-PhamP #3d #hybrid #online #sequence #video
- Hybrid On-Line 3D Face and Facial Actions Tracking in RGBD Video Sequences (HXP, VP), pp. 4194–4199.
- ICPR-2014-YiMHP #classification #invariant #locality #multi #process
- Pose Invariant Activity Classification for Multi-floor Indoor Localization (SY, PWM, TKH, VP), pp. 3505–3510.
- ICPR-2012-KimP #classification #rating #visual notation
- Attribute rating for classification of visual objects (JK, VP), pp. 1611–1614.
- ICPR-2012-YiP #classification #graph
- Sparse Granger causality graphs for human action classification (SY, VP), pp. 3374–3377.
- KDD-2012-KuksaP #evaluation #kernel #performance #scalability #sequence
- Efficient evaluation of large sequence kernels (PPK, VP), pp. 759–767.
- ICPR-2010-CohenP #learning #performance #robust
- Reinforcement Learning for Robust and Efficient Real-World Tracking (AC, VP), pp. 2989–2992.
- ICPR-2010-KuksaP #classification #performance #representation #sequence
- Spatial Representation for Efficient Sequence Classification (PPK, VP), pp. 3320–3323.
- ICPR-2008-KuksaHP #detection #kernel #performance
- Fast protein homology and fold detection with sparse spatial sample kernels (PPK, PHH, VP), pp. 1–4.
- ICML-2007-KimP #learning #recursion
- A recursive method for discriminative mixture learning (MK, VP), pp. 409–416.
- ICML-2005-JingPR #classification #learning #naive bayes #network #performance
- Efficient discriminative learning of Bayesian network classifier via boosted augmented naive Bayes (YJ, VP, JMR), pp. 369–376.
- ICPR-v3-2004-HuangMP #hybrid #markov #random #recognition #using
- A Hybrid Face Recognition Method using Markov Random Fields (RH, DNM, VP), pp. 157–160.
- ICPR-v2-2002-GargPH #classification #network
- Bayesian Networks as Ensemble of Classifiers (AG, VP, TSH), pp. 779–784.
- ICPR-v3-2002-ChoudhuryRPP #detection #learning #network
- Boosting and Structure Learning in Dynamic Bayesian Networks for Audio-Visual Speaker Detection (TC, JMR, VP, AP), p. 789–?.