BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Canada
1 × Greece
1 × Hungary
1 × Switzerland
1 × United Kingdom
2 × Finland
2 × Germany
2 × Italy
2 × Japan
2 × Spain
Collaborated with:
P.Gastin M.Kufleitner A.G.Myasnikov S.Kopecki A.Muscholl K.Reinhardt L.Ciobanu M.Elder Y.Matiyasevich A.Petit E.Ochmanski T.Walter
Talks about:
complet (7) trace (7) word (6) equat (5) mazurkiewicz (4) regular (4) languag (4) group (4) commut (3) decid (3)

Person: Volker Diekert

DBLP DBLP: Diekert:Volker

Facilitated 2 volumes:

DLT 2009Ed
DLT 2009Ed

Contributed to:

ICALP (2) 20152015
ICALP (2) 20122012
DLT 20112011
DLT 20112012
CIAA 20102010
CIAA 20102011
DLT 20072007
DLT 20072008
LATA 20072007
DLT 20022002
ICALP 20012001
ICALP 20002000
CSL 19991999
ICALP 19971997
DLT 19951995
ICALP 19951995
ICALP 19911991
ICALP 19881988
ICALP 19871987

Wrote 19 papers:

ICALP-v2-2015-CiobanuDE #equation #set
Solution Sets for Equations over Free Groups are EDT0L Languages (LC, VD, ME), pp. 134–145.
ICALP-v2-2012-DiekertKRW #regular expression
Regular Languages Are Church-Rosser Congruential (VD, MK, KR, TW), pp. 177–188.
DLT-2011-DiekertM #infinity #problem #word
Solving Word Problems in Group Extensions over Infinite Words (VD, AGM), pp. 192–203.
DLT-J-2011-DiekertM12 #infinity #word
Group Extensions over Infinite Words (VD, AGM), pp. 1001–1020.
CIAA-2010-DiekertK #complexity #regular expression
Complexity Results and the Growths of Hairpin Completions of Regular Languages (VD, SK), pp. 105–114.
CIAA-J-2010-DiekertK11 #regular expression
It is NL-Complete to Decide Whether a Hairpin Completion of Regular Languages is Regular (VD, SK), pp. 1813–1828.
DLT-2007-DiekertK #first-order #on the #word
On First-Order Fragments for Words and Mazurkiewicz Traces (VD, MK), pp. 1–19.
DLT-J-2007-DiekertGK08 #finite #first-order #logic #overview #word
A Survey on Small Fragments of First-Order Logic over Finite Words (VD, PG, MK), pp. 513–548.
LATA-2007-Diekert #equation #graph #named #word
Equations: From Words to Graph Products (VD), pp. 1–6.
DLT-2002-DiekertK #equation #polynomial
A Remark about Quadratic Trace Equations (VD, MK), pp. 59–66.
ICALP-2001-DiekertM #commutative #decidability #equation
Solvability of Equations in Free Partially Commutative Groups Is Decidable (VD, AM), pp. 543–554.
ICALP-2000-DiekertG #ltl
LTL Is Expressively Complete for Mazurkiewicz Traces (VD, PG), pp. 211–222.
CSL-1999-DiekertG #logic
An Expressively Complete Temporal Logic without Past Tense Operators for Mazurkiewicz Traces (VD, PG), pp. 188–203.
ICALP-1997-DiekertMM #equation #normalisation #using
Solving Trace Equations Using Lexicographical Normal Forms (VD, YM, AM), pp. 336–346.
DLT-1995-DiekertGP #traceability
Recent Developments in Trace Theory (VD, PG, AP), pp. 373–385.
ICALP-1995-DiekertG #concurrent #termination
A Domain for Concurrent Termination: A Generalization of Mazurkiewicz Traces (VD, PG), pp. 15–26.
ICALP-1991-DiekertOR #complexity #confluence #decidability #on the
On Confluent Semi-Commutations — Decidability and Complexity Results (VD, EO, KR), pp. 229–241.
ICALP-1988-Diekert #commutative #for free #monad #transitive
Transitive Orientations, Möbius Functions, and Complete Semi-Thue Systems for Free Partially Commutative Monoids (VD), pp. 176–187.
ICALP-1987-Diekert #concurrent #on the #process
On the Knuth-Bendix Completion for Concurrent Processes (VD), pp. 42–53.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.