BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Used together with:
concept (27)
data (15)
stream (12)
learn (8)
use (7)

Stem drift$ (all stems)

46 papers:

DATEDATE-2015-KanounS #big data #concept #data type #detection #learning #online #scheduling #streaming
Big-data streaming applications scheduling with online learning and concept drift detection (KK, MvdS), pp. 1547–1550.
ICEISICEIS-v1-2015-BurtiniLL #multi #online
Improving Online Marketing Experiments with Drifting Multi-armed Bandits (GB, JL, RL), pp. 630–636.
ECIRECIR-2015-FeiHY #microblog #topic
Handling Topic Drift for Topic Tracking in Microblogs (YF, YH, JY), pp. 477–488.
ICMLICML-2015-GuanSBMBB #linear
Moderated and Drifting Linear Dynamical Systems (JG, KS, EB, CM, EB, KB), pp. 2473–2482.
HCIHCI-AIMT-2014-LifOHALP #evaluation
Evaluation of Tactile Drift Displays in Helicopter (PL, PAO, JH, PA, BL, CP), pp. 578–588.
ICMLICML-c2-2014-HarelMEC #concept #detection
Concept Drift Detection Through Resampling (MH, SM, REY, KC), pp. 1009–1017.
ICPRICPR-2014-TsukiokaK
Selection of Features in Accord with Population Drift (HT, MK), pp. 1591–1596.
KDDKDD-2014-ShaoAK #concept #data type #learning #prototype
Prototype-based learning on concept-drifting data streams (JS, ZA, SK), pp. 412–421.
MLDMMLDM-2014-WaiyamaiKSR #classification #concept #data type #named
ACCD: Associative Classification over Concept-Drifting Data Streams (KW, TK, BS, TR), pp. 78–90.
SACSAC-2014-BarddalGE #classification #concept #named #network #social
SFNClassifier: a scale-free social network method to handle concept drift (JPB, HMG, FE), pp. 786–791.
CASECASE-2013-MarturiDP #image #performance #using
Fast image drift compensation in scanning electron microscope using image registration (NM, SD, NP), pp. 807–812.
CIKMCIKM-2013-AlbakourMO #effectiveness #microblog #on the #realtime
On sparsity and drift for effective real-time filtering in microblogs (MDA, CM, IO), pp. 419–428.
DACDAC-2012-KimYL #latency #performance #ram
Write performance improvement by hiding R drift latency in phase-change RAM (YK, SY, SL), pp. 897–906.
ICPRICPR-2012-TurkovKM #concept #pattern matching #pattern recognition #problem #recognition
The Bayesian logistic regression in pattern recognition problems under concept drift (PAT, OK, VM), pp. 2976–2979.
MLDMMLDM-2012-TurkovKM #approach #concept #pattern matching #pattern recognition #problem #recognition
Bayesian Approach to the Concept Drift in the Pattern Recognition Problems (PAT, OK, VM), pp. 1–10.
CAiSECAiSE-2011-BoseAZP #concept #mining #process
Handling Concept Drift in Process Mining (RPJCB, WMPvdA, IZ, MP), pp. 391–405.
CIKMCIKM-2010-SotoudehA #detection #framework #induction #using
Partial drift detection using a rule induction framework (DS, AA), pp. 769–778.
CIKMCIKM-2010-ZhangZTG #concept #data type #framework #named
SKIF: a data imputation framework for concept drifting data streams (PZ, XZ, JT, LG), pp. 1869–1872.
KDIRKDIR-2010-WangSFR #concept
A Meta-learning Method for Concept Drift (RW, LS, MÓF, ER), pp. 257–262.
DATEDATE-2009-ArmengaudS #metric #network
Remote measurement of local oscillator drifts in FlexRay networks (EA, AS), pp. 1082–1087.
MSRMSR-2009-EkanayakeTGB #concept #fault #predict #quality #using
Tracking concept drift of software projects using defect prediction quality (JE, JT, HCG, AB), pp. 51–60.
CIKMCIKM-2009-CaoCYX #recommendation
Enhancing recommender systems under volatile userinterest drifts (HC, EC, JY, HX), pp. 1257–1266.
ICMLICML-2009-Freund #game studies #learning #online
Invited talk: Drifting games, boosting and online learning (YF), p. 2.
KDDKDD-2009-GuptaBR #learning
Catching the drift: learning broad matches from clickthrough data (SG, MB, MR), pp. 1165–1174.
MLDMMLDM-2009-LiHLG #concept #detection #random #streaming
Concept Drifting Detection on Noisy Streaming Data in Random Ensemble Decision Trees (PPL, XH, QL, YG), pp. 236–250.
MLDMMLDM-2009-RosenthalVHHL
Drift-Aware Ensemble Regression (FR, PBV, MH, DH, WL), pp. 221–235.
SACSAC-2009-FachadaLR #simulation
Simulating antigenic drift and shift in influenza A (NF, VVL, ACR), pp. 2093–2100.
CASECASE-2008-ScheitererNOSG #performance #precise #protocol
Synchronization performance of the Precision Time Protocol in the face of slave clock frequency drift (RLS, CN, DO, GS, DG), pp. 554–559.
DACDAC-2008-MohalikRDRSPJ #analysis #embedded #latency #model checking #realtime
Model checking based analysis of end-to-end latency in embedded, real-time systems with clock drifts (SM, ACR, MGD, SR, PVS, PKP, SJ), pp. 296–299.
ICPRICPR-2008-KarnickMP #approach #classification #concept #incremental #learning #multi #using
Incremental learning in non-stationary environments with concept drift using a multiple classifier based approach (MTK, MM, RP), pp. 1–4.
KDDKDD-2008-ZhangZS #categorisation #concept #data type #mining
Categorizing and mining concept drifting data streams (PZ, XZ, YS), pp. 812–820.
SIGIRSIGIR-2008-ZighelnicK #query #robust
Query-drift prevention for robust query expansion (LZ, OK), pp. 825–826.
CIKMCIKM-2007-MacdonaldO #query
Expertise drift and query expansion in expert search (CM, IO), pp. 341–350.
KDDKDD-2007-BeckerA #concept #ranking #realtime #using
Real-time ranking with concept drift using expert advice (HB, MA), pp. 86–94.
SACSAC-2007-PintoG #concept #incremental
Incremental discretization, application to data with concept drift (CP, JG), pp. 467–468.
SACSAC-2007-SpinosaCG #approach #clustering #concept #data type #detection #named
OLINDDA: a cluster-based approach for detecting novelty and concept drift in data streams (EJS, ACPdLFdC, JG), pp. 448–452.
KDDKDD-2006-WangYPYY #concept #data type #mining
Suppressing model overfitting in mining concept-drifting data streams (HW, JY, JP, PSY, JXY), pp. 736–741.
SIGIRSIGIR-2006-Forman #concept #induction
Tackling concept drift by temporal inductive transfer (GF), pp. 252–259.
ICMLICML-2005-KolterM #concept #using
Using additive expert ensembles to cope with concept drift (JZK, MAM), pp. 449–456.
VLDBVLDB-2004-Fan #classification #concept #data type #named
StreamMiner: A Classifier Ensemble-based Engine to Mine Concept-drifting Data Streams (WF), pp. 1257–1260.
KDDKDD-2004-Fan #concept #data type
Systematic data selection to mine concept-drifting data streams (WF), pp. 128–137.
KDDKDD-2003-PrattT #concept #visualisation
Visualizing concept drift (KBP, GT), pp. 735–740.
KDDKDD-2003-WangFYH #classification #concept #data type #mining #using
Mining concept-drifting data streams using ensemble classifiers (HW, WF, PSY, JH), pp. 226–235.
ICMLICML-2000-KlinkenbergJ #concept #detection
Detecting Concept Drift with Support Vector Machines (RK, TJ), pp. 487–494.
KDDKDD-1999-SyedLS99a #concept #incremental #learning
Handling Concept Drifts in Incremental Learning with Support Vector Machines (NAS, HL, KKS), pp. 317–321.
KDDKDD-1998-LaneB #concept #identification #learning #online #security
Approaches to Online Learning and Concept Drift for User Identification in Computer Security (TL, CEB), pp. 259–263.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.