46 papers:
DATE-2015-KanounS #big data #concept #data type #detection #learning #online #scheduling #streaming- Big-data streaming applications scheduling with online learning and concept drift detection (KK, MvdS), pp. 1547–1550.
ICEIS-v1-2015-BurtiniLL #multi #online- Improving Online Marketing Experiments with Drifting Multi-armed Bandits (GB, JL, RL), pp. 630–636.
ECIR-2015-FeiHY #microblog #topic- Handling Topic Drift for Topic Tracking in Microblogs (YF, YH, JY), pp. 477–488.
ICML-2015-GuanSBMBB #linear- Moderated and Drifting Linear Dynamical Systems (JG, KS, EB, CM, EB, KB), pp. 2473–2482.
HCI-AIMT-2014-LifOHALP #evaluation- Evaluation of Tactile Drift Displays in Helicopter (PL, PAO, JH, PA, BL, CP), pp. 578–588.
ICML-c2-2014-HarelMEC #concept #detection- Concept Drift Detection Through Resampling (MH, SM, REY, KC), pp. 1009–1017.
ICPR-2014-TsukiokaK- Selection of Features in Accord with Population Drift (HT, MK), pp. 1591–1596.
KDD-2014-ShaoAK #concept #data type #learning #prototype- Prototype-based learning on concept-drifting data streams (JS, ZA, SK), pp. 412–421.
MLDM-2014-WaiyamaiKSR #classification #concept #data type #named- ACCD: Associative Classification over Concept-Drifting Data Streams (KW, TK, BS, TR), pp. 78–90.
SAC-2014-BarddalGE #classification #concept #named #network #social- SFNClassifier: a scale-free social network method to handle concept drift (JPB, HMG, FE), pp. 786–791.
CASE-2013-MarturiDP #image #performance #using- Fast image drift compensation in scanning electron microscope using image registration (NM, SD, NP), pp. 807–812.
CIKM-2013-AlbakourMO #effectiveness #microblog #on the #realtime- On sparsity and drift for effective real-time filtering in microblogs (MDA, CM, IO), pp. 419–428.
DAC-2012-KimYL #latency #performance #ram- Write performance improvement by hiding R drift latency in phase-change RAM (YK, SY, SL), pp. 897–906.
ICPR-2012-TurkovKM #concept #pattern matching #pattern recognition #problem #recognition- The Bayesian logistic regression in pattern recognition problems under concept drift (PAT, OK, VM), pp. 2976–2979.
MLDM-2012-TurkovKM #approach #concept #pattern matching #pattern recognition #problem #recognition- Bayesian Approach to the Concept Drift in the Pattern Recognition Problems (PAT, OK, VM), pp. 1–10.
CAiSE-2011-BoseAZP #concept #mining #process- Handling Concept Drift in Process Mining (RPJCB, WMPvdA, IZ, MP), pp. 391–405.
CIKM-2010-SotoudehA #detection #framework #induction #using- Partial drift detection using a rule induction framework (DS, AA), pp. 769–778.
CIKM-2010-ZhangZTG #concept #data type #framework #named- SKIF: a data imputation framework for concept drifting data streams (PZ, XZ, JT, LG), pp. 1869–1872.
KDIR-2010-WangSFR #concept- A Meta-learning Method for Concept Drift (RW, LS, MÓF, ER), pp. 257–262.
DATE-2009-ArmengaudS #metric #network- Remote measurement of local oscillator drifts in FlexRay networks (EA, AS), pp. 1082–1087.
MSR-2009-EkanayakeTGB #concept #fault #predict #quality #using- Tracking concept drift of software projects using defect prediction quality (JE, JT, HCG, AB), pp. 51–60.
CIKM-2009-CaoCYX #recommendation- Enhancing recommender systems under volatile userinterest drifts (HC, EC, JY, HX), pp. 1257–1266.
ICML-2009-Freund #game studies #learning #online- Invited talk: Drifting games, boosting and online learning (YF), p. 2.
KDD-2009-GuptaBR #learning- Catching the drift: learning broad matches from clickthrough data (SG, MB, MR), pp. 1165–1174.
MLDM-2009-LiHLG #concept #detection #random #streaming- Concept Drifting Detection on Noisy Streaming Data in Random Ensemble Decision Trees (PPL, XH, QL, YG), pp. 236–250.
MLDM-2009-RosenthalVHHL- Drift-Aware Ensemble Regression (FR, PBV, MH, DH, WL), pp. 221–235.
SAC-2009-FachadaLR #simulation- Simulating antigenic drift and shift in influenza A (NF, VVL, ACR), pp. 2093–2100.
CASE-2008-ScheitererNOSG #performance #precise #protocol- Synchronization performance of the Precision Time Protocol in the face of slave clock frequency drift (RLS, CN, DO, GS, DG), pp. 554–559.
DAC-2008-MohalikRDRSPJ #analysis #embedded #latency #model checking #realtime- Model checking based analysis of end-to-end latency in embedded, real-time systems with clock drifts (SM, ACR, MGD, SR, PVS, PKP, SJ), pp. 296–299.
ICPR-2008-KarnickMP #approach #classification #concept #incremental #learning #multi #using- Incremental learning in non-stationary environments with concept drift using a multiple classifier based approach (MTK, MM, RP), pp. 1–4.
KDD-2008-ZhangZS #categorisation #concept #data type #mining- Categorizing and mining concept drifting data streams (PZ, XZ, YS), pp. 812–820.
SIGIR-2008-ZighelnicK #query #robust- Query-drift prevention for robust query expansion (LZ, OK), pp. 825–826.
CIKM-2007-MacdonaldO #query- Expertise drift and query expansion in expert search (CM, IO), pp. 341–350.
KDD-2007-BeckerA #concept #ranking #realtime #using- Real-time ranking with concept drift using expert advice (HB, MA), pp. 86–94.
SAC-2007-PintoG #concept #incremental- Incremental discretization, application to data with concept drift (CP, JG), pp. 467–468.
SAC-2007-SpinosaCG #approach #clustering #concept #data type #detection #named- OLINDDA: a cluster-based approach for detecting novelty and concept drift in data streams (EJS, ACPdLFdC, JG), pp. 448–452.
KDD-2006-WangYPYY #concept #data type #mining- Suppressing model overfitting in mining concept-drifting data streams (HW, JY, JP, PSY, JXY), pp. 736–741.
SIGIR-2006-Forman #concept #induction- Tackling concept drift by temporal inductive transfer (GF), pp. 252–259.
ICML-2005-KolterM #concept #using- Using additive expert ensembles to cope with concept drift (JZK, MAM), pp. 449–456.
VLDB-2004-Fan #classification #concept #data type #named- StreamMiner: A Classifier Ensemble-based Engine to Mine Concept-drifting Data Streams (WF), pp. 1257–1260.
KDD-2004-Fan #concept #data type- Systematic data selection to mine concept-drifting data streams (WF), pp. 128–137.
KDD-2003-PrattT #concept #visualisation- Visualizing concept drift (KBP, GT), pp. 735–740.
KDD-2003-WangFYH #classification #concept #data type #mining #using- Mining concept-drifting data streams using ensemble classifiers (HW, WF, PSY, JH), pp. 226–235.
ICML-2000-KlinkenbergJ #concept #detection- Detecting Concept Drift with Support Vector Machines (RK, TJ), pp. 487–494.
KDD-1999-SyedLS99a #concept #incremental #learning- Handling Concept Drifts in Incremental Learning with Support Vector Machines (NAS, HL, KKS), pp. 317–321.
KDD-1998-LaneB #concept #identification #learning #online #security- Approaches to Online Learning and Concept Drift for User Identification in Computer Security (TL, CEB), pp. 259–263.