17 papers:
- TACAS-2015-Urban #abstract domain #contest #named #termination
- FuncTion: An Abstract Domain Functor for Termination — (Competition Contribution) (CU), pp. 464–466.
- SAS-2015-ChenC #abstract domain
- A Binary Decision Tree Abstract Domain Functor (JC, PC), pp. 36–53.
- POPL-2015-MelliesZ #refinement
- Functors are Type Refinement Systems (PAM, NZ), pp. 3–16.
- GT-VMT-2013-MaximovaEE #analysis #graph transformation
- Analysis of Hypergraph Transformation Systems in AGG based on M-Functors (MM, HE, CE).
- ICALP-v2-2012-Fiore #polynomial
- Discrete Generalised Polynomial Functors — (Extended Abstract) (MPF), pp. 214–226.
- GPCE-J-2005-CaretteK11 #abstraction #monad #multi #programming
- Multi-stage programming with functors and monads: Eliminating abstraction overhead from generic code (JC, OK), pp. 349–375.
- POPL-2011-CousotCL #analysis #array #automation #parametricity #scalability #segmentation
- A parametric segmentation functor for fully automatic and scalable array content analysis (PC, RC, FL), pp. 105–118.
- CSL-2011-AdamekMMS
- Power-Set Functors and Saturated Trees (JA, SM, LSM, LS), pp. 5–19.
- FoSSaCS-2006-BonsangueK #equation
- Presenting Functors by Operations and Equations (MMB, AK), pp. 172–186.
- ICFP-2006-OwensF
- From structures and functors to modules and units (SO, MF), pp. 87–98.
- GPCE-2005-CaretteK #abstraction #monad #multi #programming
- Multi-stage Programming with Functors and Monads: Eliminating Abstraction Overhead from Generic Code (JC, OK), pp. 256–274.
- ESOP-2004-FilliatreL #proving #source code
- Functors for Proofs and Programs (JCF, PL), pp. 370–384.
- FoSSaCS-1998-Moggi #category theory
- Functor Categories and Two-Level Languages (EM), pp. 211–225.
- POPL-1995-Biswas #higher-order
- Higher-Order Functors with Transparent Signatures (SKB), pp. 154–163.
- POPL-1995-Leroy #higher-order
- Applicative Functors and Fully Transparent Higher-Order Modules (XL), pp. 142–153.
- POPL-1995-Reynolds #category theory #using
- Using Functor Categories to Generate Intermediate Code (JCR), pp. 25–36.
- ESOP-1994-MacQueenT #higher-order #semantics
- A Semantics for Higher-Order Functors (DBM, MT), pp. 409–423.