15 papers:
DRR-2015-XuS- Missing value imputation: with application to handwriting data (ZX, SNS).
VLDB-2015-SongZC0 #similarity- Enriching Data Imputation with Extensive Similarity Neighbors (SS, AZ, LC, JW), pp. 1286–1297.
MLDM-2015-IshayH #algorithm #clustering #integration #novel- A Novel Algorithm for the Integration of the Imputation of Missing Values and Clustering (RBI, MH), pp. 115–129.
ICPR-2014-WangZH #approach #data-driven #health #named- DensityTransfer: A Data Driven Approach for Imputing Electronic Health Records (FW, JZ, JH), pp. 2763–2768.
KDD-2014-AnagnostopoulosT #big data #scalability- Scaling out big data missing value imputations: pythia vs. godzilla (CA, PT), pp. 651–660.
CIKM-2012-RenLZZ #collaboration #performance- The efficient imputation method for neighborhood-based collaborative filtering (YR, GL, JZ, WZ), pp. 684–693.
MLDM-2012-JoenssenB- Hot Deck Methods for Imputing Missing Data — The Effects of Limiting Donor Usage (DWJ, UB), pp. 63–75.
CIKM-2010-ZhangZTG #concept #data type #framework #named- SKIF: a data imputation framework for concept drifting data streams (PZ, XZ, JT, LG), pp. 1869–1872.
ICPR-2010-GriptonL #kernel #semistructured data #using- Kernel Domain Description with Incomplete Data: Using Instance-Specific Margins to Avoid Imputation (AG, WL), pp. 2921–2924.
SAC-2010-ColantonioPOV #adaptation #approach #clustering #matrix #named- ABBA: adaptive bicluster-based approach to impute missing values in binary matrices (AC, RDP, AO, NVV), pp. 1026–1033.
ICML-2008-DickHS #infinity #learning #semistructured data- Learning from incomplete data with infinite imputations (UD, PH, TS), pp. 232–239.
SAC-2008-SuKZG #classification #collaboration #machine learning #using- Imputation-boosted collaborative filtering using machine learning classifiers (XS, TMK, XZ, RG), pp. 949–950.
ICPR-v3-2006-GanLY06a #array #biology #constraints #framework #set- Microarray Missing Data Imputation based on a Set Theoretic Framework and Biological Constraints (XG, AWCL, HY), pp. 842–845.
SEKE-2006-KhoshgoftaarH #case study #metric #multi- Multiple Imputation of Software Measurement Data: A Case Study (TMK, JVH), pp. 220–226.
KDD-1996-LakshminarayanHGS #machine learning #using- Imputation of Missing Data Using Machine Learning Techniques (KL, SAH, RPG, TS), pp. 140–145.