15 papers:
- ICALP-v1-2015-Ganguly #polynomial
- Taylor Polynomial Estimator for Estimating Frequency Moments (SG), pp. 542–553.
- FM-2015-SolovyevJRG #estimation #fault #float
- Rigorous Estimation of Floating-Point Round-off Errors with Symbolic Taylor Expansions (AS, CJ, ZR, GG), pp. 532–550.
- CSL-2013-BoudesHP
- A characterization of the Taylor expansion of λ-terms (PB, FH, MP), pp. 101–115.
- KDD-2012-LiLP #coordination #performance #using
- Fast bregman divergence NMF using taylor expansion and coordinate descent (LL, GL, HP), pp. 307–315.
- TLCA-2011-ManzonettoP #theorem #λ-calculus
- Böhm’s Theorem for Resource λ Calculus through Taylor Expansion (GM, MP), pp. 153–168.
- LICS-2010-BartoK #csp
- New Conditions for Taylor Varieties and CSP (LB, MK), pp. 100–109.
- CAV-2009-GhorbalGP #abstract domain
- The Zonotope Abstract Domain Taylor1+ (KG, EG, SP), pp. 627–633.
- LICS-2009-PaganiT #linear #logic #problem
- The Inverse Taylor Expansion Problem in Linear Logic (MP, CT), pp. 222–231.
- DAC-2008-PangR #fixpoint #optimisation
- Optimizing imprecise fixed-point arithmetic circuits specified by Taylor Series through arithmetic transform (YP, KR), pp. 397–402.
- DATE-2007-CiesielskiAGGB #data flow #diagrams #using
- Data-flow transformations using Taylor expansion diagrams (MJC, SA, DGP, JG, EB), pp. 455–460.
- DATE-2006-GuillotBRCGA #diagrams #performance #using
- Efficient factorization of DSP transforms using taylor expansion diagrams (JG, EB, QR, MJC, DGP, SA), pp. 754–755.
- ICPR-v4-2006-PhamS #approximate #classification #clustering #metric #performance
- Metric tree partitioning and Taylor approximation for fast support vector classification (TVP, AWMS), pp. 132–135.
- IJCAR-2006-Zumkeller #modelling #optimisation
- Formal Global Optimisation with Taylor Models (RZ), pp. 408–422.
- DATE-2002-CiesielskiKZR #canonical #diagrams #representation #verification
- Taylor Expansion Diagrams: A Compact, Canonical Representation with Applications to Symbolic Verification (MJC, PK, ZZ, BR), pp. 285–289.
- ICALP-1987-Muller #complexity
- Uniform Computational Complexity of Taylor Series (NTM), pp. 435–444.