BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Australia
1 × Finland
1 × France
1 × Germany
1 × Israel
1 × Spain
1 × United Kingdom
11 × USA
3 × Canada
3 × China
Collaborated with:
C.Hsieh B.Kulis J.V.Davis N.Natarajan P.Jain S.Si K.Chiang Z.Lu J.Ghosh S.Sra H.Yu A.Banerjee D.Shin Y.Guan S.Mallela J.J.Whang D.S.Modha S.Merugu D.Inouye P.D.Ravikumar D.Kim D.Agarwal M.A.Sustik R.Kumar Y.Hou D.F.Gleich P.Kar A.Tewari V.Vasuki R.Meka C.Caramanis S.Basu R.J.Mooney D.Park J.Neeman J.Zhang S.Sanghavi I.E.Yen X.Lin K.Zhong P.K.Ravikumar H.Yun S.V.N.Vishwanathan M.Deodhar G.Gupta H.Cho
Talks about:
cluster (11) learn (7) kernel (6) rank (5) approach (4) network (4) matrix (4) model (4) use (4) algorithm (3)

Person: Inderjit S. Dhillon

DBLP DBLP: Dhillon:Inderjit_S=

Facilitated 1 volumes:

KDD 2013Ed

Contributed to:

ICML 20152015
KDD 20152015
ICML c1 20142014
VLDB 20142014
RecSys 20132013
CIKM 20122012
KDD 20122012
CIKM 20112011
KDD 20112011
ICML 20102010
RecSys 20102010
ICML 20092009
RecSys 20092009
ICML 20082008
KDD 20082008
ICML 20072007
ICML 20062006
KDD 20062006
ICML 20052005
KDD 20052005
ICML 20042004
KDD 20042004
KDD 20032003
KDD 20022002
KDD 20012001

Wrote 35 papers:

ICML-2015-HsiehND #learning #matrix
PU Learning for Matrix Completion (CJH, NN, ISD), pp. 2445–2453.
ICML-2015-HsiehYD #named #parallel #probability
PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent (CJH, HFY, ISD), pp. 2370–2379.
ICML-2015-ParkNZSD #collaboration #ranking #scalability
Preference Completion: Large-scale Collaborative Ranking from Pairwise Comparisons (DP, JN, JZ, SS, ISD), pp. 1907–1916.
ICML-2015-YenLZRD #approach #modelling #process
A Convex Exemplar-based Approach to MAD-Bayes Dirichlet Process Mixture Models (IEHY, XL, KZ, PKR, ISD), pp. 2418–2426.
KDD-2015-HouWGD #clustering #programming #rank
Non-exhaustive, Overlapping Clustering via Low-Rank Semidefinite Programming (YH, JJW, DFG, ISD), pp. 427–436.
ICML-c1-2014-HsiehSD #divide and conquer #kernel
A Divide-and-Conquer Solver for Kernel Support Vector Machines (CJH, SS, ISD), pp. 566–574.
ICML-c1-2014-InouyeRD #dependence #topic #word
Admixture of Poisson MRFs: A Topic Model with Word Dependencies (DI, PDR, ISD), pp. 683–691.
ICML-c1-2014-SiHD #approximate #kernel #memory management #performance
Memory Efficient Kernel Approximation (SS, CJH, ISD), pp. 701–709.
ICML-c1-2014-Yu0KD #learning #multi #scalability
Large-scale Multi-label Learning with Missing Labels (HFY, PJ, PK, ISD), pp. 593–601.
VLDB-2014-YunYHVD #algorithm #distributed #matrix #multi #named #probability
NOMAD: Nonlocking, stOchastic Multi-machine algorithm for Asynchronous and Decentralized matrix completion (HY, HFY, CJH, SVNV, ISD), pp. 975–986.
RecSys-2013-NatarajanSD #collaboration
Which app will you use next?: collaborative filtering with interactional context (NN, DS, ISD), pp. 201–208.
CIKM-2012-ChiangWD #clustering #network #normalisation #scalability #using
Scalable clustering of signed networks using balance normalized cut (KYC, JJW, ISD), pp. 615–624.
CIKM-2012-ShinSD #multi #predict
Multi-scale link prediction (DS, SS, ISD), pp. 215–224.
KDD-2012-HsiehCD #modelling #network #rank
Low rank modeling of signed networks (CJH, KYC, ISD), pp. 507–515.
CIKM-2011-ChiangNTD #network #predict
Exploiting longer cycles for link prediction in signed networks (KYC, NN, AT, ISD), pp. 1157–1162.
KDD-2011-HsiehD #coordination #matrix #performance
Fast coordinate descent methods with variable selection for non-negative matrix factorization (CJH, ISD), pp. 1064–1072.
ICML-2010-KimSD #algorithm #scalability
A scalable trust-region algorithm with application to mixed-norm regression (DK, SS, ISD), pp. 519–526.
RecSys-2010-VasukiNLD #network #recommendation #using
Affiliation recommendation using auxiliary networks (VV, NN, ZL, ISD), pp. 103–110.
ICML-2009-DeodharGGCD #clustering #framework #scalability #semistructured data
A scalable framework for discovering coherent co-clusters in noisy data (MD, GG, JG, HC, ISD), pp. 241–248.
ICML-2009-LuJD #geometry #learning #metric
Geometry-aware metric learning (ZL, PJ, ISD), pp. 673–680.
RecSys-2009-LuAD #approach #collaboration
A spatio-temporal approach to collaborative filtering (ZL, DA, ISD), pp. 13–20.
ICML-2008-MekaJCD #learning #online #rank
Rank minimization via online learning (RM, PJ, CC, ISD), pp. 656–663.
KDD-2008-DavisD #learning #metric #problem
Structured metric learning for high dimensional problems (JVD, ISD), pp. 195–203.
ICML-2007-DavisKJSD #learning #metric
Information-theoretic metric learning (JVD, BK, PJ, SS, ISD), pp. 209–216.
ICML-2006-KulisSD #kernel #learning #matrix #rank
Learning low-rank kernel matrices (BK, MAS, ISD), pp. 505–512.
KDD-2006-DavisD #community #rank #web
Estimating the global pagerank of web communities (JVD, ISD), pp. 116–125.
ICML-2005-KulisBDM #approach #clustering #graph #kernel
Semi-supervised graph clustering: a kernel approach (BK, SB, ISD, RJM), pp. 457–464.
KDD-2005-DhillonGK #algorithm #clustering #graph #kernel #multi #performance
A fast kernel-based multilevel algorithm for graph clustering (ISD, YG, BK), pp. 629–634.
ICML-2004-BanerjeeDGM #analysis #estimation #exponential #product line
An information theoretic analysis of maximum likelihood mixture estimation for exponential families (AB, ISD, JG, SM).
KDD-2004-BanerjeeDGMM #approach #approximate #clustering #matrix
A generalized maximum entropy approach to bregman co-clustering and matrix approximation (AB, ISD, JG, SM, DSM), pp. 509–514.
KDD-2004-DhillonGK #clustering #kernel #normalisation
Kernel k-means: spectral clustering and normalized cuts (ISD, YG, BK), pp. 551–556.
KDD-2003-BanerjeeDGS #clustering #generative #modelling
Generative model-based clustering of directional data (AB, ISD, JG, SS), pp. 19–28.
KDD-2003-DhillonMM #clustering
Information-theoretic co-clustering (ISD, SM, DSM), pp. 89–98.
KDD-2002-DhillonMK #classification #clustering #word
Enhanced word clustering for hierarchical text classification (ISD, SM, RK), pp. 191–200.
KDD-2001-Dhillon #clustering #documentation #graph #using #word
Co-clustering documents and words using bipartite spectral graph partitioning (ISD), pp. 269–274.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.