Inderjit S. Dhillon, Yehuda Koren, Rayid Ghani, Ted E. Senator, Paul Bradley, Rajesh Parekh, Jingrui He, Robert L. Grossman, Ramasamy Uthurusamy
Proceedings of the 19th International Conference on Knowledge Discovery and Data Mining
KDD, 2013.
@proceedings{KDD-2013, acmid = "2487575", address = "Chicago, Illinois, USA", editor = "Inderjit S. Dhillon and Yehuda Koren and Rayid Ghani and Ted E. Senator and Paul Bradley and Rajesh Parekh and Jingrui He and Robert L. Grossman and Ramasamy Uthurusamy", isbn = "978-1-4503-2174-7", publisher = "{ACM}", title = "{Proceedings of the 19th International Conference on Knowledge Discovery and Data Mining}", year = 2013, }
Contents (196 items)
- KDD-2013-Ramakrishnan
- Scale-out beyond map-reduce (RR), p. 1.
- KDD-2013-NgK #education #online
- The online revolution: education for everyone (AYN, DK), p. 2.
- KDD-2013-Wright #data analysis #learning #optimisation
- Optimization in learning and data analysis (SJW), p. 3.
- KDD-2013-Varian #predict
- Predicting the present with search engine data (HV), p. 4.
- KDD-2013-TangZM #modelling #multi #topic
- One theme in all views: modeling consensus topics in multiple contexts (JT, MZ, QM), pp. 5–13.
- KDD-2013-El-AriniXFG #documentation #representation
- Representing documents through their readers (KEA, MX, EBF, CG), pp. 14–22.
- KDD-2013-BacheNS #documentation #metric
- Text-based measures of document diversity (KB, DN, PS), pp. 23–31.
- KDD-2013-AbbassiMT #constraints
- Diversity maximization under matroid constraints (ZA, VSM, MT), pp. 32–40.
- KDD-2013-ZafaraniL #approach #behaviour #social #social media
- Connecting users across social media sites: a behavioral-modeling approach (RZ, HL), pp. 41–49.
- KDD-2013-StajnerTPPJ #automation #social #social media
- Automatic selection of social media responses to news (TS, BT, AMP, MP, AJ), pp. 50–58.
- KDD-2013-YangCA #social
- Estimating sharer reputation via social data calibration (JY, BCC, DA), pp. 59–67.
- KDD-2013-ShenWLW #knowledge base #modelling #twitter
- Linking named entities in Tweets with knowledge base via user interest modeling (WS, JW, PL, MW), pp. 68–76.
- KDD-2013-HanLPL0KY #graph #named #parallel #performance
- TurboGraph: a fast parallel graph engine handling billion-scale graphs in a single PC (WSH, SL, KP, JHL, MSK, JK, HY), pp. 77–85.
- KDD-2013-RamanSGJ #big data #pipes and filters
- Beyond myopic inference in big data pipelines (KR, AS, JG, TJ), pp. 86–94.
- KDD-2013-CannyZ #big data #data analysis
- Big data analytics with small footprint: squaring the cloud (JC, HZ), pp. 95–103.
- KDD-2013-TsourakakisBGGT #clique #quality
- Denser than the densest subgraph: extracting optimal quasi-cliques with quality guarantees (CET, FB, AG, FG, MAT), pp. 104–112.
- KDD-2013-GilpinED #algorithm #framework #learning
- Guided learning for role discovery (GLRD): framework, algorithms, and applications (SG, TER, IND), pp. 113–121.
- KDD-2013-WangCF #clique
- Redundancy-aware maximal cliques (JW, JC, AWCF), pp. 122–130.
- KDD-2013-GuALH #classification #graph
- Selective sampling on graphs for classification (QG, CCA, JL, JH), pp. 131–139.
- KDD-2013-ChenCMG
- Density-based logistic regression (WC, YC, YM, BG), pp. 140–148.
- KDD-2013-ZhangHL #learning #multi #named
- MI2LS: multi-instance learning from multiple informationsources (DZ, JH, RDL), pp. 149–157.
- KDD-2013-WangY #learning #query
- Querying discriminative and representative samples for batch mode active learning (ZW, JY), pp. 158–166.
- KDD-2013-NarasimhanA #bound #named #optimisation
- SVMpAUCtight: a new support vector method for optimizing partial AUC based on a tight convex upper bound (HN, SA), pp. 167–175.
- KDD-2013-TabeiKKY #constraints #scalability #similarity
- Succinct interval-splitting tree for scalable similarity search of compound-protein pairs with property constraints (YT, AK, MK, YY), pp. 176–184.
- KDD-2013-XiangYFWTY #learning #multi #predict
- Multi-source learning with block-wise missing data for Alzheimer’s disease prediction (SX, LY, WF, YW, PMT, JY), pp. 185–193.
- KDD-2013-DavidsonGCW #analysis #network
- Network discovery via constrained tensor analysis of fMRI data (IND, SG, OTC, PBW), pp. 194–202.
- KDD-2013-DasMGW #learning
- Learning to question: leveraging user preferences for shopping advice (MD, GDFM, AG, IW), pp. 203–211.
- KDD-2013-SutherlandPS #learning #matrix #rank
- Active learning and search on low-rank matrices (DJS, BP, JGS), pp. 212–220.
- KDD-2013-YinSCHC #named #recommendation
- LCARS: a location-content-aware recommender system (HY, YS, BC, ZH, LC), pp. 221–229.
- KDD-2013-OuCWWZY #scalability
- Comparing apples to oranges: a scalable solution with heterogeneous hashing (MO, PC, FW, JW, WZ, SY), pp. 230–238.
- KDD-2013-PhamP #kernel #performance #polynomial #scalability
- Fast and scalable polynomial kernels via explicit feature maps (NP, RP), pp. 239–247.
- KDD-2013-YenCLLL #classification #coordination #linear #memory management #scalability
- Indexed block coordinate descent for large-scale linear classification with limited memory (IEHY, CFC, TWL, SWL, SDL), pp. 248–256.
- KDD-2013-GopalY #classification #dependence #recursion #scalability #visual notation
- Recursive regularization for large-scale classification with hierarchical and graphical dependencies (SG, YY), pp. 257–265.
- KDD-2013-IwataSG #online #process #social
- Discovering latent influence in online social activities via shared cascade poisson processes (TI, AS, ZG), pp. 266–274.
- KDD-2013-KutzkovBBG #learning #named
- STRIP: stream learning of influence probabilities (KK, AB, FB, AG), pp. 275–283.
- KDD-2013-BahadoriLX #learning #performance #probability #process
- Fast structure learning in generalized stochastic processes with latent factors (MTB, YL, EPX), pp. 284–292.
- KDD-2013-LozanoJD #distance #estimation #matrix #multi #robust
- Robust sparse estimation of multiresponse regression and inverse covariance matrix via the L2 distance (ACL, HJ, XD), pp. 293–301.
- KDD-2013-0001Z
- Exact sparse recovery with L0 projections (PL, CHZ), pp. 302–310.
- KDD-2013-SunXY #analysis #component #robust
- Robust principal component analysis via capped norms (QS, SX, JY), pp. 311–319.
- KDD-2013-ChengZGWSW #clustering #flexibility #graph #multi #robust
- Flexible and robust co-regularized multi-domain graph clustering (WC, XZ, ZG, YW, PFS, WW), pp. 320–328.
- KDD-2013-UganderKBK #clustering #graph #multi #network
- Graph cluster randomization: network exposure to multiple universes (JU, BK, LB, JMK), pp. 329–337.
- KDD-2013-ZhouL #clustering #network #social
- Social influence based clustering of heterogeneous information networks (YZ, LL), pp. 338–346.
- KDD-2013-TangWS #confluence #named #network #scalability #social
- Confluence: conformity influence in large social networks (JT, SW, JS), pp. 347–355.
- KDD-2013-WengRPGCBSMF #evolution #information management #network #social
- The role of information diffusion in the evolution of social networks (LW, JR, NP, BG, CC, FB, RS, FM, AF), pp. 356–364.
- KDD-2013-LinWHY #information management #learning #modelling #social
- Extracting social events for learning better information diffusion models (SL, FW, QH, PSY), pp. 365–373.
- KDD-2013-HallakCM #markov #process
- Model selection in markovian processes (AH, DDC, SM), pp. 374–382.
- KDD-2013-ChenHKB #learning #named
- DTW-D: time series semi-supervised learning from a single example (YC, BH, EJK, GEAPAB), pp. 383–391.
- KDD-2013-ChenTTY #analysis #kernel #modelling #performance
- Model-based kernel for efficient time series analysis (HC, FT, PT, XY), pp. 392–400.
- KDD-2013-EftekharGK
- Information cascade at group scale (ME, YG, NK), pp. 401–409.
- KDD-2013-TangYGHLP #cyber-physical #mining
- Mining lines in the sand: on trajectory discovery from untrustworthy data in cyber-physical system (LAT, XY, QG, JH, AL, TFLP), pp. 410–418.
- KDD-2013-KleinerTASJ #performance
- A general bootstrap performance diagnostic (AK, AT, SA, IS, MIJ), pp. 419–427.
- KDD-2013-ZimekGCS #detection #effectiveness #performance
- Subsampling for efficient and effective unsupervised outlier detection ensembles (AZ, MG, RJGBC, JS), pp. 428–436.
- KDD-2013-WangDDZNTH #framework #mining #recursion #topic
- A phrase mining framework for recursive construction of a topical hierarchy (CW, MD, ND, YZ, PN, TT, JH), pp. 437–445.
- KDD-2013-FouldsBDSW #probability
- Stochastic collapsed variational Bayesian inference for latent Dirichlet allocation (JRF, LB, CD, PS, MW), pp. 446–454.
- KDD-2013-CaoTCJ #named #online #paradigm #social
- WiseMarket: a new paradigm for managing wisdom of online social users (CCC, YT, LC, HVJ), pp. 455–463.
- KDD-2013-WangS #classification #multi #relational #social #using
- Multi-label relational neighbor classification using social context features (XW, GS), pp. 464–472.
- KDD-2013-ZhuYGM #analysis #modelling #scalability #topic
- Scalable text and link analysis with mixed-topic link models (YZ, XY, LG, CM), pp. 473–481.
- KDD-2013-SongLLY #classification #collaboration #microblog #process
- Collaborative boosting for activity classification in microblogs (YS, ZL, CWkL, QY), pp. 482–490.
- KDD-2013-AbrahaoCKP #complexity #network
- Trace complexity of network inference (BDA, FC, RK, AP), pp. 491–499.
- KDD-2013-DasGPS #social
- Debiasing social wisdom (AD, SG, RP, MS), pp. 500–508.
- KDD-2013-RanuHS #mining #network
- Mining discriminative subgraphs from global-state networks (SR, MXH, AKS), pp. 509–517.
- KDD-2013-AnchuriZBGS #approximate #graph #mining
- Approximate graph mining with label costs (PA, MJZ, OB, SG, MS), pp. 518–526.
- KDD-2013-LiuCZ #approach #performance #probability
- Summarizing probabilistic frequent patterns: a fast approach (CL, LC, CZ), pp. 527–535.
- KDD-2013-WuLYT #mining #sequence
- Mining high utility episodes in complex event sequences (CWW, YFL, PSY, VST), pp. 536–544.
- KDD-2013-ShenY #difference #graph #mining #privacy
- Mining frequent graph patterns with differential privacy (ES, TY), pp. 545–553.
- KDD-2013-BabaK #crowdsourcing #estimation #quality #statistics
- Statistical quality estimation for general crowdsourcing tasks (YB, HK), pp. 554–562.
- KDD-2013-WangBLZL #predict
- Psychological advertising: exploring user psychology for click prediction in sponsored search (TW, JB, SL, YZ, TYL), pp. 563–571.
- KDD-2013-Lacoste-JulienPDKGG #knowledge base #named #scalability
- SIGMa: simple greedy matching for aligning large knowledge bases (SLJ, KP, AD, GK, TG, ZG), pp. 572–580.
- KDD-2013-Liberty #matrix #sketching
- Simple and deterministic matrix sketching (EL), pp. 581–588.
- KDD-2013-JhaSP #algorithm #performance #streaming #using
- A space efficient streaming algorithm for triangle counting using the birthday paradox (MJ, CS, AP), pp. 589–597.
- KDD-2013-YuanCMSM #topic #twitter #what
- Who, where, when and what: discover spatio-temporal topics for twitter users (QY, GC, ZM, AS, NMT), pp. 605–613.
- KDD-2013-KongCY #classification #correlation #mining #multi #network
- Multi-label classification by mining label and instance correlations from heterogeneous information networks (XK, BC, PSY), pp. 614–622.
- KDD-2013-LouCGH #interactive #modelling
- Accurate intelligible models with pairwise interactions (YL, RC, JG, GH), pp. 623–631.
- KDD-2013-MukherjeeKLWHCG #behaviour #using
- Spotting opinion spammers using behavioral footprints (AM, AK, BL, JW, MH, MC, RG), pp. 632–640.
- KDD-2013-YangWFZWY #algorithm #multi #performance #problem
- An efficient ADMM algorithm for multidimensional anisotropic total variation regularization problems (SY, JW, WF, XZ, PW, JY), pp. 641–649.
- KDD-2013-ChakrabartiH #learning #scalability #social
- Speeding up large-scale learning with a social prior (DC, RH), pp. 650–658.
- KDD-2013-KabburNK #modelling #named #recommendation #similarity
- FISM: factored item similarity models for top-N recommender systems (SK, XN, GK), pp. 659–667.
- KDD-2013-NaganoITUA #modelling #parametricity
- Nonparametric hierarchal bayesian modeling in non-contractual heterogeneous survival data (SN, YI, NT, TU, MA), pp. 668–676.
- KDD-2013-MoZY #crowdsourcing
- Cross-task crowdsourcing (KM, EZ, QY), pp. 677–685.
- KDD-2013-JoglekarGP
- Evaluating the crowd with confidence (MJ, HGM, AGP), pp. 686–694.
- KDD-2013-ZhaoWYLZ #network #social
- Inferring social roles and statuses in social networks (YZ, GW, PSY, SL, SZ), pp. 695–703.
- KDD-2013-LiuYK #adaptation #modelling #process #using
- Adaptive collective routing using gaussian process dynamic congestion models (SL, YY, RK), pp. 704–712.
- KDD-2013-YangHLC #network #online #probability #social
- Maximizing acceptance probability for active friending in online social networks (DNY, HJH, WCL, WC), pp. 713–721.
- KDD-2013-WangLSG #mining #multi
- Mining evolutionary multi-branch trees from text streams (XW, SL, YS, BG), pp. 722–730.
- KDD-2013-WangGS #graph
- Active search on graphs (XW, RG, JGS), pp. 731–738.
- KDD-2013-KuangP #clustering #documentation #matrix #performance
- Fast rank-2 nonnegative matrix factorization for hierarchical document clustering (DK, HP), pp. 739–747.
- KDD-2013-ZhouTWN #approach #predict #probability
- A “semi-lazy” approach to probabilistic path prediction (JZ, AKHT, WW, WSN), pp. 748–756.
- KDD-2013-ZhengM #optimisation #parallel
- Optimizing parallel belief propagation in junction treesusing regression (LZ, OJM), pp. 757–765.
- KDD-2013-GeGLZ #estimation #learning #multi
- Multi-source deep learning for information trustworthiness estimation (LG, JG, XL, AZ), pp. 766–774.
- KDD-2013-KuoYHKL #network #predict #social #statistics #using
- Unsupervised link prediction using aggregative statistics on heterogeneous social networks (TTK, RY, YYH, PHK, SDL), pp. 775–783.
- KDD-2013-LeeNBC #predict #social
- Link prediction with social vector clocks (CL, BN, UB, PC), pp. 784–792.
- KDD-2013-KaramshukNSNM #mining #named #online
- Geo-spotting: mining online location-based services for optimal retail store placement (DK, AN, SS, VN, CM), pp. 793–801.
- KDD-2013-LiWWF
- Location-aware publish/subscribe (GL, YW, TW, JF), pp. 802–810.
- KDD-2013-SunBK #identification #optimisation #polynomial
- Quadratic optimization to identify highly heritable quantitative traits from complex phenotypic features (JS, JB, HRK), pp. 811–819.
- KDD-2013-ErdosIBT #network
- Repetition-aware content placement in navigational networks (DE, VI, AB, ET), pp. 820–828.
- KDD-2013-WangMP #metric #scalability #similarity
- Scalable all-pairs similarity search in metric spaces (YW, AM, SP), pp. 829–837.
- KDD-2013-AltinigneliPB #parallel #using
- Massively parallel expectation maximization using graphics processing units (MCA, CP, CB), pp. 838–846.
- KDD-2013-ThorntonHHL #algorithm #classification #named #optimisation
- Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms (CT, FH, HHH, KLB), pp. 847–855.
- KDD-2013-TanXGW #learning #metric #modelling #optimisation #rank #ranking
- Direct optimization of ranking measures for learning to rank models (MT, TX, LG, SW), pp. 856–864.
- KDD-2013-ChenXJ #modelling #multi #probability #sequence
- Multi-space probabilistic sequence modeling (SC, JX, TJ), pp. 865–873.
- KDD-2013-HaoCZ0RK #learning #towards
- Towards never-ending learning from time series streams (YH, YC, JZ, BH, TR, EJK), pp. 874–882.
- KDD-2013-Mu0ZT #probability #problem #scalability
- Constrained stochastic gradient descent for large-scale least squares problem (YM, WD, TZ, DT), pp. 883–891.
- KDD-2013-ChenHL #multi #recommendation
- Making recommendations from multiple domains (WC, WH, MLL), pp. 892–900.
- KDD-2013-CuiJYWZY #approach #data-driven #network #predict
- Cascading outbreak prediction in networks: a data-driven approach (PC, SJ, LY, FW, WZ, SY), pp. 901–909.
- KDD-2013-ZhangWF #recommendation
- Combining latent factor model with location features for event-based group recommendation (WZ, JW, WF), pp. 910–918.
- KDD-2013-ZhaoH #detection #learning #online
- Cost-sensitive online active learning with application to malicious URL detection (PZ, SCHH), pp. 919–927.
- KDD-2013-LuB0L #perspective
- The bang for the buck: fair competitive viral marketing from the host perspective (WL, FB, AG, LVSL), pp. 928–936.
- KDD-2013-ZhongFZY #modelling #network #social
- Modeling the dynamics of composite social networks (EZ, WF, YZ, QY), pp. 937–945.
- KDD-2013-RistanoskiLB
- A time-dependent enhanced support vector machine for time series regression (GR, WL, JB), pp. 946–954.
- KDD-2013-NiemannW #approach #collaboration #recommendation
- A new collaborative filtering approach for increasing the aggregate diversity of recommender systems (KN, MW), pp. 955–963.
- KDD-2013-ZhuZZZ #modelling #scalability #topic
- Scalable inference in max-margin topic models (JZ, XZ, LZ, BZ), pp. 964–972.
- KDD-2013-GaneshapillaiG #data-driven
- A data-driven method for in-game decision making in MLB: when to pull a starting pitcher (GG, JVG), pp. 973–979.
- KDD-2013-BaiJS #automation #generative #set
- Exploiting user clicks for automatic seed set generation for entity matching (XB, FPJ, SHS), pp. 980–988.
- KDD-2013-YinLLW #perspective #recommendation
- Silence is also evidence: interpreting dwell time for recommendation from psychological perspective (PY, PL, WCL, MW), pp. 989–997.
- KDD-2013-ZhuXWL #distance #graph #performance #query #scalability
- Efficient single-source shortest path and distance queries on large graphs (ADZ, XX, SW, WL), pp. 998–1006.
- KDD-2013-CiglanLN #community #detection #network #on the
- On community detection in real-world networks and the importance of degree assortativity (MC, ML, KN), pp. 1007–1015.
- KDD-2013-BeiCDHQ #fault #network #social
- Trial and error in influential social networks (XB, NC, LD, XH, RQ), pp. 1016–1024.
- KDD-2013-ZhengDMZ #collaboration #interactive #matrix #multi #predict
- Collaborative matrix factorization with multiple similarities for predicting drug-target interactions (XZ, HD, HM, SZ), pp. 1025–1033.
- KDD-2013-ZhouLSYWY #identification #named
- FeaFiner: biomarker identification from medical data through feature generalization and selection (JZ, ZL, JS, LY, FW, JY), pp. 1034–1042.
- KDD-2013-LiuFYX #learning #recommendation
- Learning geographical preferences for point-of-interest recommendation (BL, YF, ZY, HX), pp. 1043–1051.
- KDD-2013-MorenoNK #graph #learning #modelling
- Learning mixed kronecker product graph models with simulated method of moments (SM, JN, SK), pp. 1052–1060.
- KDD-2013-KapoorSSS
- Measuring spontaneous devaluations in user preferences (KK, NS, JS, PRS), pp. 1061–1069.
- KDD-2013-LiWHHRY #ambiguity #mining
- Mining evidences for named entity disambiguation (YL, CW, FH, JH, DR, XY), pp. 1070–1078.
- KDD-2013-JohnsonS #data analysis #privacy
- Privacy-preserving data exploration in genome-wide association studies (AJ, VS), pp. 1079–1087.
- KDD-2013-SunMY #overview
- Synthetic review spamming and defense (HS, AM, XY), pp. 1088–1096.
- KDD-2013-ShahafYSJWL #scalability
- Information cartography: creating zoomable, large-scale maps of information (DS, JY, CS, JJ, HW, JL), pp. 1097–1105.
- KDD-2013-NishimuraU #algorithm #clustering #graph
- Restreaming graph partitioning: simple versatile algorithms for advanced balancing (JN, JU), pp. 1106–1114.
- KDD-2013-WangZR #comprehension #evolution #generative #probability #research
- Understanding evolution of research themes: a probabilistic generative model for citations (XW, CZ, DR), pp. 1115–1123.
- KDD-2013-CaiQ #analysis #linear #on the #rank
- On the equivalent of low-rank linear regressions and linear discriminant analysis based regressions (XC, CHQD, FN, HH), pp. 1124–1132.
- KDD-2013-Etzioni
- To buy or not to buy: that is the question (OE), p. 1133.
- KDD-2013-Schadt #mining #personalisation
- Mining the digital universe of data to develop personalized cancer therapies (EES), p. 1134.
- KDD-2013-Howard #learning
- The business impact of deep learning (JH), p. 1135.
- KDD-2013-Gesher #adaptation
- Adaptive adversaries: building systems to fight fraud and cyber intruders (AG), p. 1136.
- KDD-2013-Ghani #scalability #social
- Targeting and influencing at scale: from presidential elections to social good (RG), p. 1137.
- KDD-2013-Bhandarkar #named
- Hadoop: a view from the trenches (MB), p. 1138.
- KDD-2013-Marty #how #security #visual notation
- Cyber security: how visual analytics unlock insight (RM), p. 1139.
- KDD-2013-Neumann #big data #problem #using
- Using “big data” to solve “small data” problems (CN), p. 1140.
- KDD-2013-AggourH #information management
- Financing lead triggers: empowering sales reps through knowledge discovery and fusion (KSA, BH), pp. 1141–1149.
- KDD-2013-ChenLYSY #clustering #optimisation #query
- Query clustering based on bid landscape for sponsored search auction optimization (YC, WL, JY, AS, TWY), pp. 1150–1158.
- KDD-2013-KermanyMBNM #analysis #framework
- Analysis of advanced meter infrastructure data of water consumption in apartment buildings (EK, HM, DB, YN, HM), pp. 1159–1167.
- KDD-2013-KohaviDFWXP #online #scalability
- Online controlled experiments at large scale (RK, AD, BF, TW, YX, NP), pp. 1168–1176.
- KDD-2013-HongLLP #named #online
- iHR: an online recruiting system for Xiamen Talent Service Center (WH, LL, TL, WP), pp. 1177–1185.
- KDD-2013-AsadiLB #memory management #policy #realtime #twitter
- Dynamic memory allocation policies for postings in real-time Twitter search (NA, JL, MB), pp. 1186–1194.
- KDD-2013-JieLSHSC #feedback #online
- A unified search federation system based on online user feedback (LJ, SL, RS, EH, HS, YC), pp. 1195–1203.
- KDD-2013-MelvilleCLPMSAA
- Amplifying the voice of youth in Africa via text analytics (PM, VC, RDL, JP, MM, SS, RA, SA), pp. 1204–1212.
- KDD-2013-RaederPDSP #clustering #reduction #scalability #using
- Scalable supervised dimensionality reduction using clustering (TR, CP, BD, OS, FJP), pp. 1213–1221.
- KDD-2013-McMahanHSYEGNPDGCLWHBK #predict
- Ad click prediction: a view from the trenches (HBM, GH, DS, MY, DE, JG, LN, TP, ED, DG, SC, DL, MW, AMH, TB, JK), pp. 1222–1230.
- KDD-2013-SongZSHUS #modelling #probability #reasoning #scalability
- Modeling and probabilistic reasoning of population evacuation during large-scale disaster (XS, QZ, YS, TH, SU, RS), pp. 1231–1239.
- KDD-2013-StitelmanPDHRP #detection #network #online #scalability #using
- Using co-visitation networks for detecting large scale online display advertising exchange fraud (OS, CP, BD, RH, TR, FJP), pp. 1240–1248.
- KDD-2013-TangLSPG #automation #framework #monitoring #optimisation #scalability
- An integrated framework for optimizing automatic monitoring systems in large IT infrastructures (LT, TL, LS, FP, GG), pp. 1249–1257.
- KDD-2013-WeissDB #predict #quality
- Improving quality control by early prediction of manufacturing outcomes (SMW, AD, RJB), pp. 1258–1266.
- KDD-2013-EmersonWN #data mining #mining #profiling
- A data mining driven risk profiling method for road asset management (DE, JW, RN), pp. 1267–1275.
- KDD-2013-FuLLFHS #feedback #mobile #people #why
- Why people hate your app: making sense of user feedback in a mobile app store (BF, JL, LL, CF, JIH, NMS), pp. 1276–1284.
- KDD-2013-WangDYWCSI #clustering #data mining #framework #identification #mining #towards
- Towards long-lead forecasting of extreme flood events: a data mining framework for precipitation cluster precursors identification (DW, WD, KY, XW, PC, DLS, SI), pp. 1285–1293.
- KDD-2013-YiCLSY #online #performance #predict
- Predictive model performance: offline and online evaluations (JY, YC, JL, SS, TWY), pp. 1294–1302.
- KDD-2013-BakshyE #evaluation #nondeterminism #online
- Uncertainty in online experiments with dependent data: an evaluation of bootstrap methods (EB, DE), pp. 1303–1311.
- KDD-2013-ChandolaSS #information management
- Knowledge discovery from massive healthcare claims data (VC, SRS, JCS), pp. 1312–1320.
- KDD-2013-BhardwajSDHPS #visual notation
- Palette power: enabling visual search through colors (AB, ADS, WD, RH, RP, NS), pp. 1321–1329.
- KDD-2013-FeiKSNMH #detection #learning
- Heat pump detection from coarse grained smart meter data with positive and unlabeled learning (HF, YK, SS, MRN, SKM, JH), pp. 1330–1338.
- KDD-2013-HarpazDLS #empirical
- Empirical bayes model to combine signals of adverse drug reactions (RH, WD, PL, NHS), pp. 1339–1347.
- KDD-2013-KengneFTIRWS #execution #multi #scalability #sequence
- Efficiently rewriting large multimedia application execution traces with few event sequences (CKK, LCF, AT, NI, MCR, TW, MS), pp. 1348–1356.
- KDD-2013-KongY #automation #classification #distance #learning
- Discriminant malware distance learning on structural information for automated malware classification (DK, GY), pp. 1357–1365.
- KDD-2013-LuceyOCRM #using
- Assessing team strategy using spatiotemporal data (PL, DO, GPKC, JR, IM), pp. 1366–1374.
- KDD-2013-MaiyaTLR #analysis #documentation
- Exploratory analysis of highly heterogeneous document collections (ASM, JPT, FLL, RMR), pp. 1375–1383.
- KDD-2013-MontgomerySCM #experience #predict
- Experience from hosting a corporate prediction market: benefits beyond the forecasts (TAM, PMS, MJC, PEM), pp. 1384–1392.
- KDD-2013-SenatorGMYRPHRBCEJBCGKZBMMWDFWDEILKFCFGJ #database #detection #process
- Detecting insider threats in a real corporate database of computer usage activity (TES, HGG, AM, WTY, BR, RP, DH, MR, DAB, EC, IAE, JJ, VB, DHC, OG, OK, AZ, EB, RLMI, RM, LW, TGD, AF, WKW, SD, AE, JI, JYL, DK, CF, DDC, LF, AG, DJ), pp. 1393–1401.
- KDD-2013-ShakarianRCK #community #composition #distance #mining #network #social
- Mining for geographically disperse communities in social networks by leveraging distance modularity (PS, PR, DC, CK), pp. 1402–1409.
- KDD-2013-TranPLHBV #framework #predict #risk management
- An integrated framework for suicide risk prediction (TT, DQP, WL, RH, MB, SV), pp. 1410–1418.
- KDD-2013-Vatsavai #approach #learning #multi #using
- Gaussian multiple instance learning approach for mapping the slums of the world using very high resolution imagery (RRV), pp. 1419–1426.
- KDD-2013-WuNTWXX #framework #privacy
- A privacy preserving framework for managing vehicle data in road pricing systems (HW, WSN, KLT, WW, SX, MX), pp. 1427–1435.
- KDD-2013-ZhengLH #big data #named #quality
- U-Air: when urban air quality inference meets big data (YZ, FL, HPH), pp. 1436–1444.
- KDD-2013-BouadjenekHB #framework #named #open source #personalisation #platform #social #web
- LAICOS: an open source platform for personalized social web search (MRB, HH, MB), pp. 1446–1449.
- KDD-2013-ChengXCACG #mining #named #realtime #social #social media
- JobMiner: a real-time system for mining job-related patterns from social media (YC, YX, ZC, AA, ANC, SG), pp. 1450–1453.
- KDD-2013-ChiangLPY
- Inferring distant-time location in low-sampling-rate trajectories (MFC, YHL, WCP, PSY), pp. 1454–1457.
- KDD-2013-DanilevskyWTNCDWH #mining #named #semistructured data #topic
- AMETHYST: a system for mining and exploring topical hierarchies of heterogeneous data (MD, CW, FT, SN, GC, ND, LW, JH), pp. 1458–1461.
- KDD-2013-GundechaRFL #social #social media
- A tool for collecting provenance data in social media (PG, SR, ZF, HL), pp. 1462–1465.
- KDD-2013-HuaCZLR #detection #named #twitter
- STED: semi-supervised targeted-interest event detectionin in twitter (TH, FC, LZ, CTL, NR), pp. 1466–1469.
- KDD-2013-JinSSBWR #modelling #named #using
- Forex-foreteller: currency trend modeling using news articles (FJ, NS, PS, PB, WW, NR), pp. 1470–1473.
- KDD-2013-LeeAC #realtime #twitter #using
- Real-time disease surveillance using Twitter data: demonstration on flu and cancer (KL, AA, ANC), pp. 1474–1477.
- KDD-2013-LeeLM #evolution #keyword #named #social
- KeySee: supporting keyword search on evolving events in social streams (PL, LVSL, EEM), pp. 1478–1481.
- KDD-2013-MorstatterKLM #comprehension #twitter
- Understanding Twitter data with TweetXplorer (FM, SK, HL, RM), pp. 1482–1485.
- KDD-2013-RautiainenSHYK #concept #mining #online
- An online system with end-user services: mining novelty concepts from tv broadcast subtitles (MR, JS, AH, MY, VK), pp. 1486–1489.
- KDD-2013-RobardetSPF #dependence
- When TEDDY meets GrizzLY: temporal dependency discovery for triggering road deicing operations (CR, VMS, MP, AF), pp. 1490–1493.
- KDD-2013-TaoLHZCDDDGJKKLLLLOSTWZZ #mining #multi #named
- EventCube: multi-dimensional search and mining of structured and text data (FT, KHL, JH, CZ, XC, MD, ND, BD, JG, HJ, RK, AK, QL, YL, CXL, JL, NCO, ANS, RT, CW, DZ, BZ), pp. 1494–1497.
- KDD-2013-WangLLWWC #analysis #named #twitter
- SEA: a system for event analysis on chinese tweets (YW, HL, HL, JW, ZW, JC), pp. 1498–1501.
- KDD-2013-YangWZCZZYMFWLLT #named #network #scalability #social
- SAE: social analytic engine for large networks (YY, JW, YZ, WC, JZ, HZ, ZY, BM, ZF, SW, XL, DL, JT), pp. 1502–1505.
- KDD-2013-ZengJZLLLSZLDLW #data mining #distributed #mining #named #performance
- FIU-Miner: a fast, integrated, and user-friendly system for data mining in distributed environment (CZ, YJ, LZ, JL, LL, HL, CS, WZ, TL, BD, ML, PW), pp. 1506–1509.
- KDD-2013-ZhangWNLWY #how #named #network #predict #social #visualisation
- LAFT-Explorer: inferring, visualizing and predicting how your social network expands (JZ, CW, YN, YL, JW, PSY), pp. 1510–1513.
- KDD-2013-ZhaoYNG #framework #learning #twitter
- A transfer learning based framework of crowd-selection on twitter (ZZ, DY, WN, SG), pp. 1514–1517.
- KDD-2013-ZolfagharASCRV #named
- Risk-O-Meter: an intelligent clinical risk calculator (KZ, JA, DS, SCC, SBR, NV), pp. 1518–1521.
- KDD-2013-FriezeGT #algorithm #graph #mining #modelling #scalability
- Algorithmic techniques for modeling and mining large graphs (AMAzING) (AMF, AG, CET), p. 1523.
- KDD-2013-PapadimitriouE #mining #mobile #overview
- Mining data from mobile devices: a survey of smart sensing and analytics (SP, TER), p. 1524.
- KDD-2013-SunR #big data #data analysis
- Big data analytics for healthcare (JS, CKR), p. 1525.
- KDD-2013-GetoorM #big data
- Entity resolution for big data (LG, AM), p. 1527.
- KDD-2013-GetoorM13a #network
- Network sampling (LG, AM), p. 1528.
- KDD-2013-AhmedS #modelling #parametricity #scalability
- The dataminer’s guide to scalable mixed-membership and nonparametric bayesian models (AA, AJS), p. 1529.
28 ×#named
26 ×#social
24 ×#scalability
23 ×#learning
21 ×#mining
21 ×#network
18 ×#modelling
17 ×#multi
14 ×#predict
13 ×#online
26 ×#social
24 ×#scalability
23 ×#learning
21 ×#mining
21 ×#network
18 ×#modelling
17 ×#multi
14 ×#predict
13 ×#online