BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Used together with:
network (27)
neural (24)
recognit (14)
use (13)
learn (10)

Stem convolut$ (all stems)

62 papers:

DACDAC-2015-CavigelliMB #embedded #network #realtime
Accelerating real-time embedded scene labeling with convolutional networks (LC, MM, LB), p. 6.
DATEDATE-2015-0001B #clustering #energy #manycore #performance
A ultra-low-energy convolution engine for fast brain-inspired vision in multicore clusters (FC, LB), pp. 683–688.
ECIRECIR-2015-HuynhHR #analysis #learning #sentiment #strict
Learning Higher-Level Features with Convolutional Restricted Boltzmann Machines for Sentiment Analysis (TH, YH, SMR), pp. 447–452.
ICMLICML-2015-ClarkS #game studies #network
Training Deep Convolutional Neural Networks to Play Go (CC, AJS), pp. 1766–1774.
ICMLICML-2015-HongYKH #learning #network #online
Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network (SH, TY, SK, BH), pp. 597–606.
SIGIRSIGIR-2015-SeverynM #learning #network #rank
Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks (AS, AM), pp. 373–382.
SIGIRSIGIR-2015-SeverynM15a #analysis #network #sentiment #twitter
Twitter Sentiment Analysis with Deep Convolutional Neural Networks (AS, AM), pp. 959–962.
CASECASE-2014-LinHC #gesture #network #recognition #using
Human hand gesture recognition using a convolution neural network (HIL, MHH, WKC), pp. 1038–1043.
CIKMCIKM-2014-ShenHGDM #information retrieval #semantics
A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval (YS, XH, JG, LD, GM), pp. 101–110.
ICMLICML-c1-2014-DonahueJVHZTD #named #recognition #visual notation
DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition (JD, YJ, OV, JH, NZ, ET, TD), pp. 647–655.
ICMLICML-c1-2014-PinheiroC #network
Recurrent Convolutional Neural Networks for Scene Labeling (PHOP, RC), pp. 82–90.
ICMLICML-c1-2014-ZhouT #generative #network #predict #probability
Deep Supervised and Convolutional Generative Stochastic Network for Protein Secondary Structure Prediction (JZ, OGT), pp. 745–753.
ICPRICPR-2014-DongPHLDJ #classification #network #using
Vehicle Type Classification Using Unsupervised Convolutional Neural Network (ZD, MP, YH, TL, YD, YJ), pp. 172–177.
ICPRICPR-2014-HafemannOC #network #recognition #using
Forest Species Recognition Using Deep Convolutional Neural Networks (LGH, LSO, PRC), pp. 1103–1107.
ICPRICPR-2014-KangKYLD #classification #documentation #image #network
Convolutional Neural Networks for Document Image Classification (LK, JK, PY, YL, DSD), pp. 3168–3172.
ICPRICPR-2014-NieKZ #learning #recognition #using
Periocular Recognition Using Unsupervised Convolutional RBM Feature Learning (LN, AK, SZ), pp. 399–404.
ICPRICPR-2014-RenYZH #classification #image #learning #nearest neighbour
Learning Convolutional Nonlinear Features for K Nearest Neighbor Image Classification (WR, YY, JZ, KH), pp. 4358–4363.
ICPRICPR-2014-SuLTLT #recognition #using
Character Recognition in Natural Scenes Using Convolutional Co-occurrence HOG (BS, SL, ST, JHL, CLT), pp. 2926–2931.
ICPRICPR-2014-WuHYWT #image #network #segmentation
Early Hierarchical Contexts Learned by Convolutional Networks for Image Segmentation (ZW, YH, YY, LW, TT), pp. 1538–1543.
SACSAC-2014-MoonKSP #image #novel #scalability
A novel double linear-cubic convolution interpolation for digital image scaling (HMM, KRK, JS, SBP), pp. 1733–1734.
ICDARICDAR-2013-BlucheNK #feature model #network #recognition #word
Feature Extraction with Convolutional Neural Networks for Handwritten Word Recognition (TB, HN, CK), pp. 285–289.
ICDARICDAR-2013-CecottiV13a #multi #recognition
A Radial Neural Convolutional Layer for Multi-oriented Character Recognition (HC, SV), pp. 668–672.
ICDARICDAR-2013-ZhuZ #detection #image #recognition #using
Label Detection and Recognition for USPTO Images Using Convolutional K-Means Feature Quantization and Ada-Boost (SZ, RZ), pp. 633–637.
ICMLICML-c1-2013-KarbasiSS #learning
Iterative Learning and Denoising in Convolutional Neural Associative Memories (AK, AHS, AS), pp. 445–453.
ICPRICPR-2012-LinnerS #comparison #normalisation #quality #using
Comparison of restoration quality on square and hexagonal grids using normalized convolution (EL, RS), pp. 3046–3049.
ICPRICPR-2012-SermanetCL #classification #network
Convolutional neural networks applied to house numbers digit classification (PS, SC, YL), pp. 3288–3291.
ICPRICPR-2012-WangWCN #network #recognition
End-to-end text recognition with convolutional neural networks (TW, DJW, AC, AYN), pp. 3304–3308.
ICPRICPR-2012-WuFH0N #network #recognition
Cascaded heterogeneous convolutional neural networks for handwritten digit recognition (CW, WF, YH, JS, SN), pp. 657–660.
ICPRICPR-2012-ZhangW #image #segmentation
An image fusion method based on region segmentation and Cauchy convolution (YQZ, XJW), pp. 392–395.
KDDKDD-2012-0001LHSE #approach #towards
Towards heterogeneous temporal clinical event pattern discovery: a convolutional approach (FW, NL, JH, JS, SE), pp. 453–461.
ICDARICDAR-2011-BukhariSB #set #using
Text-Line Extraction Using a Convolution of Isotropic Gaussian Filter with a Set of Line Filters (SSB, FS, TMB), pp. 579–583.
ICDARICDAR-2011-CiresanMGS #classification #network
Convolutional Neural Network Committees for Handwritten Character Classification (DCC, UM, LMG, JS), pp. 1135–1139.
ICALPICALP-v1-2011-CliffordJ #bound #integer #multi #online
Lower Bounds for Online Integer Multiplication and Convolution in the Cell-Probe Model (RC, MJ), pp. 593–604.
CIKMCIKM-2011-CroceMB #dependence #kernel #semantics
Semantic convolution kernels over dependency trees: smoothed partial tree kernel (DC, AM, RB), pp. 2013–2016.
ICMLICML-2011-ChenPSDC #analysis #learning #process
The Hierarchical Beta Process for Convolutional Factor Analysis and Deep Learning (BC, GP, GS, DBD, LC), pp. 361–368.
ICMLICML-2010-JiXYY #3d #network #recognition
3D Convolutional Neural Networks for Human Action Recognition (SJ, WX, MY, KY), pp. 495–502.
ICPRICPR-2010-DengSS #detection #network #pattern matching #pattern recognition #recognition
Applying Error-Correcting Output Coding to Enhance Convolutional Neural Network for Target Detection and Pattern Recognition (HD, GS, CYS), pp. 4291–4294.
ICPRICPR-2010-Perez-CarrascoSASL #network #realtime
Spike-Based Convolutional Network for Real-Time Processing (JAPC, CS, BA, TSG, BLB), pp. 3085–3088.
HPDCHPDC-2010-DiasBG
CUDA-based triangulations of convolution molecular surfaces (SD, KB, AJPG), pp. 531–540.
ICDARICDAR-2009-DengSS #network #recognition
Error-Correcting Output Coding for the Convolutional Neural Network for Optical Character Recognition (HD, GS, CYS), pp. 581–585.
ICMLICML-2009-LeeGRN #learning #network #scalability
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations (HL, RBG, RR, AYN), pp. 609–616.
DATEDATE-2008-VogtW #configuration management #set
A Reconfigurable Application Specific Instruction Set Processor for Convolutional and Turbo Decoding in a SDR Environment (TV, NW), pp. 38–43.
IFLIFL-2008-Hinze #proving #theorem
Scans and Convolutions — A Calculational Proof of Moessner’s Theorem (RH), pp. 1–24.
ICMLICML-2008-ShiBY #learning #modelling #using
Data spectroscopy: learning mixture models using eigenspaces of convolution operators (TS, MB, BY), pp. 936–943.
ICMLICML-2008-ShinK #kernel
A generalization of Haussler’s convolution kernel: mapping kernel (KS, TK), pp. 944–951.
STOCSTOC-2007-BjorklundHKK #fourier #performance #set
Fourier meets möbius: fast subset convolution (AB, TH, PK, MK), pp. 67–74.
TLCATLCA-2007-Vaux #λ-calculus #μ-calculus
Convolution λμ-Calculus (LV), pp. 381–395.
ICPRICPR-v1-2006-KimC #ambiguity #clustering #permutation
ICA-Based Clustering for Resolving Permutation Ambiguity in Frequency-Domain Convolutive Source Separation (MK, SC), pp. 950–954.
ICPRICPR-v3-2006-ChenHWJF #detection #network
The Application of a Convolution Neural Network on Face and License Plate Detection (YNC, CCH, CTW, BSJ, KCF), pp. 552–555.
ICPRICPR-v4-2006-NeuhausB #graph #kernel
A Convolution Edit Kernel for Error-tolerant Graph Matching (MN, HB), pp. 220–223.
ICPRICPR-v4-2006-TiviveB #classification #gender #network
A Shunting Inhibitory Convolutional Neural Network for Gender Classification (FHCT, AB), pp. 421–424.
ICDARICDAR-2005-CecottiB #adaptation #network #recognition
Rejection strategy for Convolutional Neural Network by adaptive topology applied to handwritten digits recognition (HC, AB), pp. 765–769.
ICDARICDAR-2005-LucasC #grid #performance
Fast Convolutional OCR with the Scanning N-Tuple Grid (SML, KTC), pp. 799–805.
DATEDATE-v2-2004-ZhouZLLZC #analysis #using
Steady-State Analysis of Nonlinear Circuits Using Discrete Singular Convolution Method (XZ, DZ, JL, RL, XZ, CC), pp. 1322–1326.
ICPRICPR-v2-2004-FlusserZ #invariant #symmetry
Invariants to Convolution with Circularly Symmetric PSF (JF, BZ), pp. 11–14.
OOPSLAOOPSLA-2004-ZhangJ04a #middleware
Resolving feature convolution in middleware systems (CZ, HAJ), pp. 188–205.
ICDARICDAR-2003-SimardSP #analysis #documentation #network #visual notation
Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis (PYS, DS, JCP), pp. 958–962.
ICPRICPR-v2-2002-Fasel #analysis #network #robust #using
Robust Face Analysis using Convolutional Neural Networks (BF), pp. 40–43.
ICPRICPR-v3-2000-JohanssonKG #detection #normalisation #symmetry #using
Detecting Rotational Symmetries Using Normalized Convolution (BJ, HK, GHG), pp. 3500–3504.
DATEDATE-1999-Sheehan #reduction #using
Projective Convolution: RLC Model-Order Reduction Using the Impulse Response (BNS), p. 669–?.
ICDARICDAR-1999-TangSMRTC #2d #algorithm #composition
Accelerating the 2-D Mallat Decomposition Algorithm with Cyclical Convolution and FNTT (YYT, QS, HM, DBR, YT, ZKC), pp. 87–90.
PLDIPLDI-1991-BromleyHMS #compilation #fortran
Fortran at Ten Gigaflops: The Connection Machine Convolution Compiler (MB, SH, TSM, GLSJ), pp. 145–156.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.