BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
sentiment
Google sentiment

Tag #sentiment

181 papers:

MSRMSR-2019-BiswasVP #analysis #re-engineering #word
Exploring word embedding techniques to improve sentiment analysis of software engineering texts (EB, KVS, LLP), pp. 68–78.
SANERSANER-2019-PaulBS #code review
Expressions of Sentiments during Code Reviews: Male vs. Female (RP, AB, KZS), pp. 26–37.
CoGCoG-2019-SykownikBM #analysis #automation #pipes and filters #speech
Can You Hear the Player Experienceƒ A Pipeline for Automated Sentiment Analysis of Player Speech (PS, FB, MM), pp. 1–4.
CIKMCIKM-2019-ChenLX0 #classification #network
Sentiment Commonsense Induced Sequential Neural Networks for Sentiment Classification (SC, XL, YX, LH0), pp. 1021–1030.
CIKMCIKM-2019-ShiRWR #classification #multi #online
Document-Level Multi-Aspect Sentiment Classification for Online Reviews of Medical Experts (TS, VR, SW, CKR), pp. 2723–2731.
CIKMCIKM-2019-WangJLHMD #community #mining #network #social
Emotional Contagion-Based Social Sentiment Mining in Social Networks by Introducing Network Communities (XW, DJ, ML, DH, KM, JD), pp. 1763–1772.
CIKMCIKM-2019-WangLL19a #evolution #modelling #social
Modeling Sentiment Evolution for Social Incidents (YW, HL, CL), pp. 2413–2416.
CIKMCIKM-2019-WuWLH0 #classification
Sentiment Lexicon Enhanced Neural Sentiment Classification (CW, FW, JL, YH, XX0), pp. 1091–1100.
CIKMCIKM-2019-YinLW #analysis #interactive #multi
Interactive Multi-Grained Joint Model for Targeted Sentiment Analysis (DY, XL, XW0), pp. 1031–1040.
ECIRECIR-p1-2019-DonnellyR #analysis #on the
On Interpretability and Feature Representations: An Analysis of the Sentiment Neuron (JD, AR), pp. 795–802.
ECIRECIR-p1-2019-WangOM #analysis #comparison #recommendation
Comparison of Sentiment Analysis and User Ratings in Venue Recommendation (XW, IO, CM), pp. 215–228.
ESEC-FSEESEC-FSE-2019-ChenCLML #analysis #approach #learning #named #re-engineering
SEntiMoji: an emoji-powered learning approach for sentiment analysis in software engineering (ZC, YC, XL, QM, XL), pp. 841–852.
EDMEDM-2018-CrossleyOLBDB #analysis #modelling
Modeling Math Identity and Math Success through Sentiment Analysis and Linguistic Features (SAC, JO, MJL, FB, MD, RSB).
ICSMEICSME-2018-0008ZOPLB #analysis #dataset #re-engineering
Two Datasets for Sentiment Analysis in Software Engineering (BL0, FZ, RO, MDP, ML, GB), p. 712.
MSRMSR-2018-NovielliGL08 #analysis #benchmark #metric #re-engineering #research
A benchmark study on sentiment analysis for software engineering research (NN, DG, FL), pp. 364–375.
SANERSANER-2018-IslamZ #analysis #comparison #re-engineering #tool support
A comparison of software engineering domain specific sentiment analysis tools (MRI, MFZ), pp. 487–491.
CIKMCIKM-2018-EsuliF0 #network #quantifier
A Recurrent Neural Network for Sentiment Quantification (AE, AMF, FS0), pp. 1775–1778.
CIKMCIKM-2018-WangM #classification #multi
Multi-Emotion Category Improving Embedding for Sentiment Classification (SW, XM0), pp. 1719–1722.
CIKMCIKM-2018-WuWL #classification #learning #multi
Imbalanced Sentiment Classification with Multi-Task Learning (FW, CW, JL), pp. 1631–1634.
CIKMCIKM-2018-YangQZSZ #overview #summary
Cross-domain Aspect/Sentiment-aware Abstractive Review Summarization (MY0, QQ, JZ, YS, ZZ), pp. 1531–1534.
ECIRECIR-2018-Zhang0LZ #analysis #matrix #representation #twitter #using
Unsupervised Sentiment Analysis of Twitter Posts Using Density Matrix Representation (YZ, DS0, XL, PZ0), pp. 316–329.
ICPRICPR-2018-LiuF #classification
Introduce More Characteristics of Samples into Cross-domain Sentiment Classification (WL, XF), pp. 25–30.
KDDKDD-2018-GongW #analysis #behaviour #modelling #network #social
When Sentiment Analysis Meets Social Network: A Holistic User Behavior Modeling in Opinionated Data (LG, HW), pp. 1455–1464.
KDDKDD-2018-HuF #analysis #multimodal
Multimodal Sentiment Analysis To Explore the Structure of Emotions (AH, SRF), pp. 350–358.
ICSE-2018-0008ZBPLO #analysis #how #question #re-engineering
Sentiment analysis for software engineering: how far can we go? (BL0, FZ, GB, MDP, ML, RO), pp. 94–104.
ICSE-2018-CalefatoLMN #detection #development
Sentiment polarity detection for software development (FC, FL, FM, NN), p. 128.
MSRMSR-2017-IslamZ #analysis #automation #re-engineering
Leveraging automated sentiment analysis in software engineering (MRI, MFZ), pp. 203–214.
MSRMSR-2017-SouzaS #analysis
Sentiment analysis of Travis CI builds (RRGS, BS), pp. 459–462.
CIKMCIKM-2017-ChengZZKZW #classification #network
Aspect-level Sentiment Classification with HEAT (HiErarchical ATtention) Network (JC, SZ, JZ, IK, XZ0, HW0), pp. 97–106.
CIKMCIKM-2017-ChenLL #analysis #modelling
Modeling Language Discrepancy for Cross-Lingual Sentiment Analysis (QC, CL, WL0), pp. 117–126.
CIKMCIKM-2017-TanKMH #overview #retrieval #summary #topic
Sentence Retrieval with Sentiment-specific Topical Anchoring for Review Summarization (JT, AK, RPM, YH), pp. 2323–2326.
CIKMCIKM-2017-TayTH #analysis #memory management #network
Dyadic Memory Networks for Aspect-based Sentiment Analysis (YT, LAT, SCH), pp. 107–116.
CIKMCIKM-2017-XuM #analysis #multimodal #named #network #semantics
MultiSentiNet: A Deep Semantic Network for Multimodal Sentiment Analysis (NX, WM), pp. 2399–2402.
ECIRECIR-2017-ChenLLLLH #analysis
Cross-Lingual Sentiment Relation Capturing for Cross-Lingual Sentiment Analysis (QC, WL0, YL, XL, CL, YH), pp. 54–67.
ECIRECIR-2017-GiachanouGMC #predict
Sentiment Propagation for Predicting Reputation Polarity (AG, JG, IM, FC), pp. 226–238.
KDDKDD-2017-IosifidisN #learning #scalability
Large Scale Sentiment Learning with Limited Labels (VI, EN), pp. 1823–1832.
KDDKDD-2017-PaulLTYF #analysis #exclamation #named #twitter #what
Compass: Spatio Temporal Sentiment Analysis of US Election What Twitter Says! (DP, FL0, MKT, XY, RF), pp. 1585–1594.
KDDKDD-2017-WangFWYDX #recommendation
A Location-Sentiment-Aware Recommender System for Both Home-Town and Out-of-Town Users (HW0, YF, QW, HY, CD, HX), pp. 1135–1143.
ASEASE-2017-AhmedBIR #analysis #code review #interactive #named #overview
SentiCR: a customized sentiment analysis tool for code review interactions (TA, AB, AI, SR), pp. 106–111.
MSRMSR-2016-BlazB #analysis
Sentiment analysis in tickets for IT support (CCAB, KB), pp. 235–246.
MSRMSR-2016-SinhaLS #commit #developer
Analyzing developer sentiment in commit logs (VS, AL, BS), pp. 520–523.
CIKMCIKM-2016-GiachanouMC #twitter
Explaining Sentiment Spikes in Twitter (AG, IM, FC), pp. 2263–2268.
CIKMCIKM-2016-WuWHHQ #adaptation #multi
Sentiment Domain Adaptation with Multi-Level Contextual Sentiment Knowledge (FW, SW, YH, SH, YQ), pp. 949–958.
CIKMCIKM-2016-YuSHCH #analysis #data-driven #multi #quantifier
Data-Driven Contextual Valence Shifter Quantification for Multi-Theme Sentiment Analysis (HY, JS, MH, MC, JH0), pp. 939–948.
ECIRECIR-2016-FlaesRW #analysis #multi #what
What Multimedia Sentiment Analysis Says About City Liveability (JBF, SR, MW), pp. 824–829.
ECIRECIR-2016-LiWPA #analysis #empirical #learning
An Empirical Study of Skip-Gram Features and Regularization for Learning on Sentiment Analysis (CL, BW, VP, JAA), pp. 72–87.
HTHT-2015-GutierrezP #microblog #platform
Sentiment-based User Profiles in Microblogging Platforms (FJG, BP), pp. 23–32.
HTHT-2015-MishraDBS #analysis #incremental #learning
Sentiment Analysis with Incremental Human-in-the-Loop Learning and Lexical Resource Customization (SM, JD, JB, ES), pp. 323–325.
EDMEDM-2015-MorettiMS #analysis #education #evaluation #policy #topic
Application of Sentiment and Topic Analysis to Teacher Evaluation Policy in the U.S (AM, KM, ASA), pp. 628–629.
ICSMEICSME-2015-JongelingDS #analysis #re-engineering #research #tool support
Choosing your weapons: On sentiment analysis tools for software engineering research (RJ, SD, AS), pp. 531–535.
HCIHIMI-IKD-2015-GonzalezCB #approach #design #modelling
Modeling User’s Sentiment in User Segmentations: An Argumentation Approach for User Centered Design (MPG, CIC, RFB), pp. 595–606.
HCISCSM-2015-KinclNPS #analysis #independence
Language-Independent Sentiment Analysis with Surrounding Context Extension (TK, MN, JP, PS), pp. 158–168.
CIKMCIKM-2015-DingSGHYH #network #predict #video
Video Popularity Prediction by Sentiment Propagation via Implicit Network (WD, YS, LG, XH, RY, TH), pp. 1621–1630.
CIKMCIKM-2015-WangHCWL #aspect-oriented #microblog #mining #named
ASEM: Mining Aspects and Sentiment of Events from Microblog (RW, WH, WC0, TW, KL), pp. 1923–1926.
CIKMCIKM-2015-ZhaoHSLYZ
Sentiment Extraction by Leveraging Aspect-Opinion Association Structure (LZ, MH, JS, HL, XY, XZ0), pp. 343–352.
ECIRECIR-2015-CanneytCD #classification #topic #twitter
Topic-Dependent Sentiment Classification on Twitter (SVC, NC, BD), pp. 441–446.
ECIRECIR-2015-HagenPBS #classification #detection #twitter #using
Twitter Sentiment Detection via Ensemble Classification Using Averaged Confidence Scores (MH, MP, MB, BS), pp. 741–754.
ECIRECIR-2015-HuynhHR #analysis #learning #strict
Learning Higher-Level Features with Convolutional Restricted Boltzmann Machines for Sentiment Analysis (TH, YH, SMR), pp. 447–452.
ECIRECIR-2015-LeeL
Measuring User Influence, Susceptibility and Cynicalness in Sentiment Diffusion (RKWL, EPL), pp. 411–422.
ECIRECIR-2015-Moghaddam #analysis #fault #feedback #mining
Beyond Sentiment Analysis: Mining Defects and Improvements from Customer Feedback (SM), pp. 400–410.
ECIRECIR-2015-Peleja #graph #named
PopMeter: Linked-Entities in a Sentiment Graph (FP), pp. 785–788.
ECIRECIR-2015-PelejaM #learning #retrieval
Learning Sentiment Based Ranked-Lexicons for Opinion Retrieval (FP, JM), pp. 435–440.
MLDMMLDM-2015-CoralloFMACCGS #analysis #approach
Sentiment Analysis for Government: An Optimized Approach (AC, LF, MM, MA, AC, VC, EG, DS), pp. 98–112.
MLDMMLDM-2015-ShaluntsB #analysis #named
SentiSAIL: Sentiment Analysis in English, German and Russian (GS, GB), pp. 87–97.
SIGIRSIGIR-2015-SeverynM15a #analysis #network #twitter
Twitter Sentiment Analysis with Deep Convolutional Neural Networks (AS, AM), pp. 959–962.
SIGIRSIGIR-2015-YangKML #modelling #parametricity #topic
Parametric and Non-parametric User-aware Sentiment Topic Models (ZY, AK, AM, SL), pp. 413–422.
SACSAC-2015-DAddioM #approach #collaboration
A sentiment-based item description approach for kNN collaborative filtering (RMD, MGM), pp. 1060–1065.
SACSAC-2015-DermoucheKVL #modelling #topic
A joint model for topic-sentiment modeling from text (MD, LK, JV, SL), pp. 819–824.
SACSAC-2015-IqbalKK #analysis
Bias-aware lexicon-based sentiment analysis (MI, AK, FK), pp. 845–850.
SIGMODSIGMOD-2014-ZhuGCL #analysis #clustering #graph #social #social media
Tripartite graph clustering for dynamic sentiment analysis on social media (LZ, AG, JC, KL), pp. 1531–1542.
EDMEDM-2014-WenYR #analysis #question #what
Sentiment Analysis in MOOC Discussion Forums: What does it tell us? (MW, DY, CPR), pp. 130–137.
MSRMSR-2014-GuzmanAL #analysis #commit #empirical #git
Sentiment analysis of commit comments in GitHub: an empirical study (EG, DA, YL), pp. 352–355.
MSRMSR-2014-PleteaVS #analysis #git #security
Security and emotion: sentiment analysis of security discussions on GitHub (DP, BV, AS), pp. 348–351.
CHI-PLAYCHI-PLAY-2014-SunMGMC #design #game studies
Playing with emotions: sentiment design for public space (ES, MM, GG, MEM, DMC), pp. 439–440.
EDOCEDOC-2014-MukkamalaHV #analysis #social
Fuzzy-Set Based Sentiment Analysis of Big Social Data (RRM, AH, RKV), pp. 71–80.
CIKMCIKM-2014-FangQHZ #composition #overview #ranking #summary #using
Ranking Sentiment Explanations for Review Summarization Using Dual Decomposition (LF, QQ, MH, XZ), pp. 1931–1934.
CIKMCIKM-2014-LiangZHGB #identification #named #novel #word
CONR: A Novel Method for Sentiment Word Identification (JL, XZ, YH, LG, SB), pp. 1943–1946.
CIKMCIKM-2014-LimB #topic #twitter
Twitter Opinion Topic Model: Extracting Product Opinions from Tweets by Leveraging Hashtags and Sentiment Lexicon (KWL, WLB), pp. 1319–1328.
CIKMCIKM-2014-LinJXWCW #analysis
A Cross-Lingual Joint Aspect/Sentiment Model for Sentiment Analysis (ZL, XJ, XX, WW, XC, YW), pp. 1089–1098.
CIKMCIKM-2014-LinLYC #classification #modelling
Exploring Ensemble of Models in Taxonomy-based Cross-Domain Sentiment Classification (CKL, YYL, CHY, HHC), pp. 1279–1288.
ECIRECIR-2014-MonizJ #analysis
Sentiment Analysis and the Impact of Employee Satisfaction on Firm Earnings (AM, FdJ), pp. 519–527.
KDDKDD-2014-DiaoQWSJW #aspect-oriented #modelling #recommendation
Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS) (QD, MQ, CYW, AJS, JJ, CW), pp. 193–202.
KDDKDD-2014-SudhofEMP #social
Sentiment expression conditioned by affective transitions and social forces (MS, AGE, ALM, CP), pp. 1136–1145.
KDIRKDIR-2014-HasnaMDP #recommendation
Sentiment Polarity Extension for Context-Sensitive Recommender Systems (OLH, FCM, MD, RP), pp. 126–137.
KDIRKDIR-2014-LiuF #analysis #classification #topic #web
Web Content Classification based on Topic and Sentiment Analysis of Text (SL, TF), pp. 300–307.
KDIRKDIR-2014-LiuF14a #analysis #classification #n-gram #similarity #web
Combining N-gram based Similarity Analysis with Sentiment Analysis in Web Content Classification (SL, TF), pp. 530–537.
KDIRKDIR-2014-NagwanshiM #detection #semantics #using
Sarcasm Detection using Sentiment and Semantic Features (PN, CEVM), pp. 418–424.
KDIRKDIR-2014-PsomakelisTAV #analysis #twitter
Comparing Methods for Twitter Sentiment Analysis (EP, KT, DA, TAV), pp. 225–232.
KDIRKDIR-2014-WanJLL #analysis #challenge #web
Sentimental Analysis of Web Financial Reviews — Opportunities and Challenges (CW, TJ, DL, GL), pp. 366–373.
KMISKMIS-2014-DinsoreanuB #classification #twitter
Unsupervised Twitter Sentiment Classification (MD, AB), pp. 220–227.
RecSysRecSys-2014-YuanMZS #predict
Exploiting sentiment homophily for link prediction (GY, PKM, ZZ, MPS), pp. 17–24.
SIGIRSIGIR-2014-HaiCCLC #overview
Coarse-to-fine review selection via supervised joint aspect and sentiment model (ZH, GC, KC, WL, PC), pp. 617–626.
SIGIRSIGIR-2014-LourencoVPMFP #analysis
Economically-efficient sentiment stream analysis (RLdOJ, AV, AMP, WMJ, RF, SP), pp. 637–646.
SIGIRSIGIR-2014-PelejaSM #analysis
Reputation analysis with a ranked sentiment-lexicon (FP, JS, JM), pp. 1207–1210.
SIGIRSIGIR-2014-ZhangL0ZLM #analysis #modelling #recommendation
Explicit factor models for explainable recommendation based on phrase-level sentiment analysis (YZ, GL, MZ, YZ, YL, SM), pp. 83–92.
SIGIRSIGIR-2014-ZhangZ0LM #classification #overview
Do users rate or review?: boost phrase-level sentiment labeling with review-level sentiment classification (YZ, HZ, MZ, YL, SM), pp. 1027–1030.
RERE-2014-GuzmanM #analysis #fine-grained #how
How Do Users Like This Feature? A Fine Grained Sentiment Analysis of App Reviews (EG, WM), pp. 153–162.
HTHT-2013-KrestelS #generative #topic
Generating contextualized sentiment lexica based on latent topics and user ratings (RK, SS), pp. 129–138.
HTHT-2013-YangZYW #personalisation #recommendation
A sentiment-enhanced personalized location recommendation system (DY, DZ, ZY, ZW), pp. 119–128.
ICDARICDAR-2013-NalisnickB #network
Extracting Sentiment Networks from Shakespeare’s Plays (ETN, HSB), pp. 758–762.
SIGMODSIGMOD-2013-TsytsarauAP #correlation #performance #scalability
Efficient sentiment correlation for large-scale demographics (MT, SAY, TP), pp. 253–264.
HCIHCI-III-2013-DasG #exclamation
Sentimental Eyes! (AD, BG), pp. 310–318.
HCIHIMI-D-2013-YanagimotoSY #classification #estimation #network #using #word
Word Classification for Sentiment Polarity Estimation Using Neural Network (HY, MS, AY), pp. 669–677.
HCIOCSC-2013-YuanOXS #classification #overview #using #web
Sentiment Classification of Web Review Using Association Rules (MY, YO, ZX, HS), pp. 442–450.
CIKMCIKM-2013-BrossE #automation #mining #overview
Automatic construction of domain and aspect specific sentiment lexicons for customer review mining (JB, HE), pp. 1077–1086.
CIKMCIKM-2013-FangHZ #analysis #overview
Exploring weakly supervised latent sentiment explanations for aspect-level review analysis (LF, MH, XZ), pp. 1057–1066.
ECIRECIR-2013-ErmakovE #classification
Sentiment Classification Based on Phonetic Characteristics (SE, LE), pp. 706–709.
KDIRKDIR-KMIS-2013-CheetiSC #adaptation #approach #classification #naive bayes #syntax #using
Cross-domain Sentiment Classification using an Adapted Naïve Bayes Approach and Features Derived from Syntax Trees (SC, AS, DC), pp. 169–176.
KDIRKDIR-KMIS-2013-DimasKV #approach #twitter
Every Character Counts — A Character based Approach to Determine Political Sentiment on Twitter (AD, PCK, EMV), pp. 261–266.
KDIRKDIR-KMIS-2013-LlavoriLGNAS #analysis #framework #named #towards
i-SLOD: Towards an Infrastructure for Enabling the Dissemination and Analysis of Sentiment Data (RBL, DML, LGM, VN, MJA, IS), pp. 214–219.
RecSysRecSys-2013-DongOSMS #recommendation
Sentimental product recommendation (RD, MPO, MS, KM, BS), pp. 411–414.
SIGIRSIGIR-2013-AktolgaA #bias
Sentiment diversification with different biases (EA, JA), pp. 593–602.
SIGIRSIGIR-2013-PappasP #analysis #collaboration
Sentiment analysis of user comments for one-class collaborative filtering over ted talks (NP, APB), pp. 773–776.
SACSAC-2013-HogenboomBFBJK #analysis
Exploiting emoticons in sentiment analysis (AH, DB, FF, MB, FdJ, UK), pp. 703–710.
HTHT-2012-AisoposPTV #analysis #comparative #microblog
Content vs. context for sentiment analysis: a comparative analysis over microblogs (FA, GP, KT, TAV), pp. 187–196.
CHICHI-2012-YangAAWL
The way i talk to you: sentiment expression in an organizational context (JY, LAA, MSA, ZW, CYL), pp. 551–554.
CIKMCIKM-2012-AmiriC #mining
Mining sentiment terminology through time (HA, TSC), pp. 2060–2064.
CIKMCIKM-2012-JuLSZHL #classification #documentation #word
Dual word and document seed selection for semi-supervised sentiment classification (SJ, SL, YS, GZ, YH, XL), pp. 2295–2298.
CIKMCIKM-2012-LinTCXS #effectiveness #performance #using
Effective and efficient?: bilingual sentiment lexicon extraction using collocation alignment (ZL, ST, XC, XX, WS), pp. 1542–1546.
CIKMCIKM-2012-MukherjeeMRB #multi #named #twitter
TwiSent: a multistage system for analyzing sentiment in twitter (SM, AM, BAR, PB), pp. 2531–2534.
CIKMCIKM-2012-VuralCS #crawling #web
Sentiment-focused web crawling (AGV, BBC, PS), pp. 2020–2024.
CIKMCIKM-2012-XuTLCL #aspect-oriented #towards
Towards jointly extracting aspects and aspect-specific sentiment knowledge (XX, ST, YL, XC, ZL), pp. 1895–1899.
ECIRECIR-2012-Garcia-MoyaAL #modelling #probability #retrieval
Combining Probabilistic Language Models for Aspect-Based Sentiment Retrieval (LGM, HAS, RBL), pp. 561–564.
ECIRECIR-2012-KarlgrenSOEH #analysis
Usefulness of Sentiment Analysis (JK, MS, FO, FE, OH), pp. 426–435.
KDDKDD-2012-ZhaoDWX #analysis #named #twitter
MoodLens: an emoticon-based sentiment analysis system for chinese tweets (JZ, LD, JW, KX), pp. 1528–1531.
KDIRKDIR-2012-FukumotoMM #analysis #collaboration #recommendation
Collaborative Filtering based on Sentiment Analysis of Guest Reviews for Hotel Recommendation (FF, CM, SM), pp. 193–198.
KDIRKDIR-2012-MountassirBB #analysis #problem #semistructured data #set
Addressing the Problem of Unbalanced Data Sets in Sentiment Analysis (AM, HB, IB), pp. 306–311.
SEKESEKE-2012-JangidPE #analysis #mobile #predict #using
A Mobile Application for Stock Market Prediction Using Sentiment Analysis (KJ, PP, ME), pp. 13–18.
SIGIRSIGIR-2012-ONeil #ranking #using
Entity sentiment extraction using text ranking (JO), p. 1024.
SIGIRSIGIR-2012-ZhangXCHDALC #identification #information management #semantics #syntax
Sentiment identification by incorporating syntax, semantics and context information (KZ, YX, YC, DH, DD, AA, WkL, ANC), pp. 1143–1144.
SACSAC-2012-Kawamae
Joint sentiment aspect model (NK), pp. 205–210.
SACSAC-2012-KhucSRR #analysis #distributed #scalability #towards #twitter
Towards building large-scale distributed systems for twitter sentiment analysis (VNK, CS, RR, JR), pp. 459–464.
CSCWCSCW-2011-ParkKKLS #predict
The politics of comments: predicting political orientation of news stories with commenters’ sentiment patterns (SP, MK, JK, YL, JS), pp. 113–122.
CIKMCIKM-2011-BespalovBQS #analysis #classification #n-gram
Sentiment classification based on supervised latent n-gram analysis (DB, BB, YQ, AS), pp. 375–382.
CIKMCIKM-2011-GaoL #adaptation #analysis #classification #probability #using
A cross-domain adaptation method for sentiment classification using probabilistic latent analysis (SG, HL), pp. 1047–1052.
CIKMCIKM-2011-GuoZGS #analysis #aspect-oriented #multi
Domain customization for aspect-oriented opinion analysis with multi-level latent sentiment clues (HG, HZ, ZG, ZS), pp. 2493–2496.
CIKMCIKM-2011-LauLBW #learning #scalability #web
Leveraging web 2.0 data for scalable semi-supervised learning of domain-specific sentiment lexicons (RYKL, CLL, PB, KFW), pp. 2457–2460.
CIKMCIKM-2011-LinTC #classification #independence #using #word
Language-independent sentiment classification using three common words (ZL, ST, XC), pp. 1041–1046.
CIKMCIKM-2011-LiuLZD #classification #network
Sentiment classification via l2-norm deep belief network (TL, ML, SZ, XD), pp. 2489–2492.
CIKMCIKM-2011-LiZWLW #classification
Imbalanced sentiment classification (SL, GZ, ZW, SYML, RW), pp. 2469–2472.
CIKMCIKM-2011-MohtaramiALT #nondeterminism #predict
Predicting the uncertainty of sentiment adjectives in indirect answers (MM, HA, ML, CLT), pp. 2485–2488.
CIKMCIKM-2011-PeraQN #multi
A query-based multi-document sentiment summarizer (MSP, RQ, YKN), pp. 1071–1076.
CIKMCIKM-2011-WangWLZZ #analysis #approach #classification #graph #hashtag #topic #twitter
Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach (XW, FW, XL, MZ, MZ), pp. 1031–1040.
CIKMCIKM-2011-WeichselbraunGS #game studies #using
Using games with a purpose and bootstrapping to create domain-specific sentiment lexicons (AW, SG, AS), pp. 1053–1060.
ECIRECIR-2011-Carrillo-de-AlbornozPGD #analysis #mining #overview #rating
A Joint Model of Feature Mining and Sentiment Analysis for Product Review Rating (JCdA, LP, PG, AD), pp. 55–66.
ECIRECIR-2011-Demartini #named #retrieval
ARES: A Retrieval Engine Based on Sentiments — Sentiment-Based Search Result Annotation and Diversification (GD), pp. 772–775.
ECIRECIR-2011-He #classification
Latent Sentiment Model for Weakly-Supervised Cross-Lingual Sentiment Classification (YH), pp. 214–225.
ECIRECIR-2011-TackstromM #fine-grained #modelling #predict
Discovering Fine-Grained Sentiment with Latent Variable Structured Prediction Models (OT, RTM), pp. 368–374.
ICMLICML-2011-GlorotBB #adaptation #approach #classification #learning #scalability
Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning Approach (XG, AB, YB), pp. 513–520.
KDDKDD-2011-GuerraVMA #analysis #approach #bias #realtime
From bias to opinion: a transfer-learning approach to real-time sentiment analysis (PHCG, AV, WMJ, VA), pp. 150–158.
KDDKDD-2011-TanLTJZL #analysis #network #social
User-level sentiment analysis incorporating social networks (CT, LL, JT, LJ, MZ, PL), pp. 1397–1405.
MLDMMLDM-2011-JiangMY #analysis #topic
Topic Sentiment Change Analysis (YJ, WM, CTY), pp. 443–457.
RecSysRecSys-2011-Faridani #analysis #canonical #correlation #recommendation #using
Using canonical correlation analysis for generalized sentiment analysis, product recommendation and search (SF), pp. 355–358.
SIGIRSIGIR-2011-SilvaGVMF #analysis #effectiveness #self
Effective sentiment stream analysis with self-augmenting training and demand-driven projection (ISS, JG, AV, WMJ, RF), pp. 475–484.
EDMEDM-2010-KimC #analysis #case study #experience #learning #student
Sentiment Analysis in Student Experiences of Learning (SMK, RAC), pp. 111–120.
CHICHI-2010-DiakopoulosS #performance #twitter
Characterizing debate performance via aggregated twitter sentiment (ND, DAS), pp. 1195–1198.
CIKMCIKM-2010-BerminghamS #microblog #question
Classifying sentiment in microblogs: is brevity an advantage? (AB, AFS), pp. 1833–1836.
CIKMCIKM-2010-DragutYSM #taxonomy #word
Construction of a sentimental word dictionary (ECD, CTY, APS, WM), pp. 1761–1764.
CIKMCIKM-2010-He #classification #learning
Learning sentiment classification model from labeled features (YH), pp. 1685–1688.
ICPRICPR-2010-LiZXCG #analysis #documentation #multi
Exploiting Combined Multi-level Model for Document Sentiment Analysis (SL, HZ, WX, GC, JG), pp. 4141–4144.
KDIRKDIR-2010-LieglGSH #automation #detection #taxonomy
Dictionary Extension for Improving Automated Sentiment Detection (JL, SG, AS, AHH), pp. 404–407.
SIGIRSIGIR-2010-LeeLSR #precise #retrieval #using
High precision opinion retrieval using sentiment-relevance flows (SWL, JTL, YIS, HCR), pp. 817–818.
SIGIRSIGIR-2010-LiuYHA #adaptation #analysis #performance #predict
S-PLASA+: adaptive sentiment analysis with application to sales performance prediction (YL, XY, XH, AA), pp. 873–874.
CIKMCIKM-2009-DuT
Building domain-oriented sentiment lexicon by improved information bottleneck (WD, ST), pp. 1749–1752.
CIKMCIKM-2009-JiaYM #analysis #effectiveness #retrieval
The effect of negation on sentiment analysis and retrieval effectiveness (LJ, CTY, WM), pp. 1827–1830.
CIKMCIKM-2009-LinH #analysis #topic
Joint sentiment/topic model for sentiment analysis (CL, YH), pp. 375–384.
CIKMCIKM-2009-LiuZ #classification #using
Cross-domain sentiment classification using a two-stage method (KL, JZ), pp. 1717–1720.
CIKMCIKM-2009-QiuZHZ #classification #named #self
SELC: a self-supervised model for sentiment classification (LQ, WZ, CH, KZ), pp. 929–936.
ECIRECIR-2009-FanC
Sentiment-Oriented Contextual Advertising (TKF, CHC), pp. 202–215.
ECIRECIR-2009-NaLNL #retrieval
Improving Opinion Retrieval Based on Query-Specific Sentiment Lexicon (SHN, YL, SHN, JHL), pp. 734–738.
ECIRECIR-2009-TanCWX #adaptation #analysis #naive bayes
Adapting Naive Bayes to Domain Adaptation for Sentiment Analysis (ST, XC, YW, HX), pp. 337–349.
KDDKDD-2009-MelvilleGL #analysis #classification
Sentiment analysis of blogs by combining lexical knowledge with text classification (PM, WG, RDL), pp. 1275–1284.
SIGIRSIGIR-2009-LiSDZ #classification
Knowledge transformation for cross-domain sentiment classification (TL, VS, CHQD, YZ), pp. 716–717.
SIGIRSIGIR-2008-TanWC #detection #using
Combining learn-based and lexicon-based techniques for sentiment detection without using labeled examples (ST, YW, XC), pp. 743–744.
SIGIRSIGIR-2008-ZhangY #generative #retrieval #topic
A generation model to unify topic relevance and lexicon-based sentiment for opinion retrieval (MZ, XY), pp. 411–418.
CIKMCIKM-2007-TanWTC #analysis #novel #problem
A novel scheme for domain-transfer problem in the context of sentiment analysis (ST, GW, HT, XC), pp. 979–982.
ECIRECIR-2007-MeenaP #analysis #using
Sentence Level Sentiment Analysis in the Presence of Conjuncts Using Linguistic Analysis (AM, TVP), pp. 573–580.
SIGIRSIGIR-2007-LiuHAY #named #performance #predict #using
ARSA: a sentiment-aware model for predicting sales performance using blogs (YL, XH, AA, XY), pp. 607–614.
JCDLJCDL-2005-NaKCH #library
Sentiment-based search in digital libraries (JCN, CSGK, SC, NBH), pp. 143–144.
CIKMCIKM-2005-WhitelawGA #analysis #using
Using appraisal groups for sentiment analysis (CW, NG, SA), pp. 625–631.
DRRDRR-2004-HurstN #documentation #online #topic
Retrieving topical sentiments from online document collections (MFH, KN), pp. 27–34.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.