BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Used together with:
frequent (60)
mine (49)
data (19)
stream (14)
base (12)

Stem itemset$ (all stems)

96 papers:

KDDKDD-2015-RiondatoU #mining
Mining Frequent Itemsets through Progressive Sampling with Rademacher Averages (MR, EU), pp. 1005–1014.
MLDMMLDM-2015-SalahAM #mining #optimisation #performance #pipes and filters
Optimizing the Data-Process Relationship for Fast Mining of Frequent Itemsets in MapReduce (SS, RA, FM), pp. 217–231.
SACSAC-2015-Fournier-VigerZ #mining #named #performance
FOSHU: faster on-shelf high utility itemset mining — with or without negative unit profit (PFV, SZ), pp. 857–864.
CGOCGO-2015-NagarajG #analysis #approximate #mining #pointer #using
Approximating flow-sensitive pointer analysis using frequent itemset mining (VN, RG), pp. 225–234.
SIGMODSIGMOD-2014-YamamotoIF #approximate #data type #mining
Resource-oriented approximation for frequent itemset mining from bursty data streams (YY, KI, SF), pp. 205–216.
VLDBVLDB-2015-ThirumuruganathanRAD14 #mining
Beyond Itemsets: Mining Frequent Featuresets over Structured Items (ST, HR, SA, GD), pp. 257–268.
ICEISICEIS-v1-2014-HenriquesA #database #generative #modelling #sequence
Generative Modeling of Itemset Sequences Derived from Real Databases (RH, CA), pp. 264–272.
KDDKDD-2014-LeeC
Top-k frequent itemsets via differentially private FP-trees (JL, CWC), pp. 931–940.
KDIRKDIR-2014-BenhamouJSS #mining #symmetry
Symmetry Breaking in Itemset Mining (BB, SJ, LS, YS), pp. 86–96.
PODSPODS-2013-Gottlob #identification #polynomial
Deciding monotone duality and identifying frequent itemsets in quadratic logspace (GG), pp. 25–36.
VLDBVLDB-2013-LiuSW #performance #query
A Performance Study of Three Disk-based Structures for Indexing and Querying Frequent Itemsets (GL, AS, LW), pp. 505–516.
MLDMMLDM-2013-CarvalhoR #bibliography #nondeterminism #perspective
Discovering Frequent Itemsets on Uncertain Data: A Systematic Review (JVdC, DDR), pp. 390–404.
SACSAC-2013-ZhangHMZMM #data type #mining
Mining frequent itemsets over tuple-evolving data streams (CZ, YH, MM, CZ, HM, FM), pp. 267–274.
VLDBVLDB-2012-LiQSC #difference #mining #named #privacy
PrivBasis: Frequent Itemset Mining with Differential Privacy (NL, WHQ, DS, JC), pp. 1340–1351.
VLDBVLDB-2012-TongCCY #database #mining #nondeterminism
Mining Frequent Itemsets over Uncertain Databases (YT, LC, YC, PSY), pp. 1650–1661.
VLDBVLDB-2013-ZengNC12 #mining #on the
On differentially private frequent itemset mining (CZ, JFN, JYC), pp. 25–36.
CIKMCIKM-2012-KozawaAK #database #gpu #mining #nondeterminism #probability
GPU acceleration of probabilistic frequent itemset mining from uncertain databases (YK, TA, HK), pp. 892–901.
CIKMCIKM-2012-LiuQ #generative #mining
Mining high utility itemsets without candidate generation (ML, JFQ), pp. 55–64.
ICPRICPR-2012-MarcaciniCR #approach #clustering #learning
An active learning approach to frequent itemset-based text clustering (RMM, GNC, SOR), pp. 3529–3532.
KDDKDD-2012-TongCY #mining #named #nondeterminism
UFIMT: an uncertain frequent itemset mining toolbox (YT, LC, PSY), pp. 1508–1511.
KDDKDD-2012-WuSTY #mining
Mining top-K high utility itemsets (CWW, BES, VST, PSY), pp. 78–86.
KDIRKDIR-2012-Vanetik #classification #dataset
Classification of Datasets with Frequent Itemsets is Wild (NV), pp. 386–389.
SACSAC-2012-BaralisCJF #multi #summary
Multi-document summarization exploiting frequent itemsets (EB, LC, SJ, AF), pp. 782–786.
KDDKDD-2011-MampaeyTV #what
Tell me what i need to know: succinctly summarizing data with itemsets (MM, NT, JV), pp. 573–581.
KDIRKDIR-2011-VanetikG #mining #named
HashMax: A New Method for Mining Maximal Frequent Itemsets (NV, EG), pp. 140–145.
MLDMMLDM-2011-Kessl #mining #parallel #using
Static Load Balancing of Parallel Mining of Frequent Itemsets Using Reservoir Sampling (RK), pp. 553–567.
SACSAC-2011-LeungJ #data type #mining #nondeterminism #using
Frequent itemset mining of uncertain data streams using the damped window model (CKSL, FJ), pp. 950–955.
SACSAC-2011-LeungS #equivalence #mining #nondeterminism
Equivalence class transformation based mining of frequent itemsets from uncertain data (CKSL, LS), pp. 983–984.
CIKMCIKM-2010-WangCLC #approach #mining #modelling #probability
Accelerating probabilistic frequent itemset mining: a model-based approach (LW, RC, SDL, DWLC), pp. 429–438.
KDDKDD-2010-Ruggieri #mining
Frequent regular itemset mining (SR), pp. 263–272.
KDDKDD-2010-TaiYC #mining #outsourcing #pseudo #taxonomy
k-Support anonymity based on pseudo taxonomy for outsourcing of frequent itemset mining (CHT, PSY, MSC), pp. 473–482.
KDDKDD-2010-Tatti
Probably the best itemsets (NT), pp. 293–302.
KDDKDD-2010-TsengWSY #algorithm #mining #named #performance
UP-Growth: an efficient algorithm for high utility itemset mining (VST, CWW, BES, PSY), pp. 253–262.
KDIRKDIR-2010-GokceA #algorithm #trade-off
A Tradeoff Balancing Algorithm for Hiding Sensitive Frequent Itemsets (HG, OA), pp. 200–205.
KDIRKDIR-2010-JedrzejczakW #generative #query #using
Integrated Candidate Generation in Processing Batches of Frequent Itemset Queries using Apriori (PJ, MW), pp. 487–490.
SACSAC-2010-BaralisCC #dataset #mining #persistent #scalability
A persistent HY-Tree to efficiently support itemset mining on large datasets (EB, TC, SC), pp. 1060–1064.
SACSAC-2010-LeungHB #constraints #mining #nondeterminism
Mining uncertain data for frequent itemsets that satisfy aggregate constraints (CKSL, BH, DAB), pp. 1034–1038.
SACSAC-2010-ShieTY #data type #mining #online
Online mining of temporal maximal utility itemsets from data streams (BES, VST, PSY), pp. 1622–1626.
PODSPODS-2009-KirschMPPUV #approach #identification #performance #statistics
An efficient rigorous approach for identifying statistically significant frequent itemsets (AK, MM, AP, GP, EU, FV), pp. 117–126.
VLDBVLDB-2009-WongCHKM #mining #outsourcing
An Audit Environment for Outsourcing of Frequent Itemset Mining (WKW, DWLC, EH, BK, NM), pp. 1162–1172.
CIKMCIKM-2009-GaoW #generative #performance
Efficient itemset generator discovery over a stream sliding window (CG, JW), pp. 355–364.
CIKMCIKM-2009-TaoO09a #data type #mining
Mining frequent itemsets in time-varying data streams (YT, MTÖ), pp. 1521–1524.
KDDKDD-2009-BerneckerKRVZ #database #mining #nondeterminism #probability
Probabilistic frequent itemset mining in uncertain databases (TB, HPK, MR, FV, AZ), pp. 119–128.
KDDKDD-2009-NijssenGR #approach #constraints #correlation #mining #programming
Correlated itemset mining in ROC space: a constraint programming approach (SN, TG, LDR), pp. 647–656.
KDDKDD-2009-PoernomoG #named #representation
CP-summary: a concise representation for browsing frequent itemsets (AKP, VG), pp. 687–696.
KDDKDD-2009-PoernomoG09a #fault tolerance #mining #performance #towards
Towards efficient mining of proportional fault-tolerant frequent itemsets (AKP, VG), pp. 697–706.
ICPRICPR-2008-ShidaraKN #classification #consistency
Classification by bagged consistent itemset rules (YS, MK, AN), pp. 1–4.
KDDKDD-2008-JinAXR #effectiveness #performance #summary
Effective and efficient itemset pattern summarization: regression-based approaches (RJ, MAA, YX, NR), pp. 399–407.
KDDKDD-2008-RaedtGN #constraints #mining #programming
Constraint programming for itemset mining (LDR, TG, SN), pp. 204–212.
SEKESEKE-2008-DingH #algorithm #mining #named #performance
VP: an Efficient Algorithm for Frequent Itemset Mining (QD, WSH), pp. 381–386.
SACSAC-2008-YamamotoOR #information management #interactive
Including the user in the knowledge discovery loop: interactive itemset-driven rule extraction (CHY, MCFO, SOR), pp. 1212–1217.
VLDBVLDB-2007-LiL #mining #multi #optimisation
Optimization of Frequent Itemset Mining on Multiple-Core Processor (EL, LL), pp. 1275–1285.
KDDKDD-2007-NijssenF #mining
Mining optimal decision trees from itemset lattices (SN, ÉF), pp. 530–539.
KDDKDD-2007-YuanWY #semantics #visual notation
From frequent itemsets to semantically meaningful visual patterns (JY, YW, MY), pp. 864–873.
MLDMMLDM-2007-AoYHH #data type #mining
Mining Maximal Frequent Itemsets in Data Streams Based on FP-Tree (FA, YY, JH, KH), pp. 479–489.
MLDMMLDM-2007-ShidaraNK #classification #consistency #named
CCIC: Consistent Common Itemsets Classifier (YS, AN, MK), pp. 490–498.
SACSAC-2007-CaldersGM #mining
Mining itemsets in the presence of missing values (TC, BG, MM), pp. 404–408.
SACSAC-2007-LianCY #database #maintenance #scalability
Maintenance of maximal frequent itemsets in large databases (WL, DWC, SMY), pp. 388–392.
SACSAC-2007-LinL #mining #privacy #transaction
Privacy preserving itemset mining through fake transactions (JLL, JYCL), pp. 375–379.
DocEngDocEng-2006-TesarSJP #comparison #documentation
Extending the single words-based document model: a comparison of bigrams and 2-itemsets (RT, VS, KJ, MP), pp. 138–146.
CIKMCIKM-2006-Gkoulalas-DivanisV #approach #integer #programming
An integer programming approach for frequent itemset hiding (AGD, VSV), pp. 748–757.
KDDKDD-2006-JiangG #data type #mining #named
CFI-Stream: mining closed frequent itemsets in data streams (NJ, LG), pp. 592–597.
KDDKDD-2006-KnobbeH #performance
Maximally informative k-itemsets and their efficient discovery (AJK, EKYH), pp. 237–244.
KDDKDD-2006-WangP #modelling #probability #using
Summarizing itemset patterns using probabilistic models (CW, SP), pp. 730–735.
SACSAC-2006-DextersPG #algorithm #analysis #probability
A probability analysis for candidate-based frequent itemset algorithms (ND, PWP, DVG), pp. 541–545.
CIKMCIKM-2005-LaurNSP #data type #estimation #on the
On the estimation of frequent itemsets for data streams: theory and experiments (PAL, RN, JES, PP), pp. 327–328.
KDDKDD-2005-YanCHX #approach
Summarizing itemset patterns: a profile-based approach (XY, HC, JH, DX), pp. 314–323.
MLDMMLDM-2005-LaurSNP #data type #statistics
Statistical Supports for Frequent Itemsets on Data Streams (PAL, JES, RN, PP), pp. 395–404.
SACSAC-2005-ShangS #database #mining #relational
Depth-first frequent itemset mining in relational databases (XS, KUS), pp. 1112–1117.
SACSAC-2005-SongR #transaction
Finding frequent itemsets by transaction mapping (MS, SR), pp. 488–492.
PODSPODS-2004-Calders #complexity #satisfiability
Computational Complexity of Itemset Frequency Satisfiability (TC), pp. 143–154.
VLDBVLDB-2004-LiM
Computing Frequent Itemsets Inside Oracle 10G (WL, AM), pp. 1253–1256.
VLDBVLDB-2004-YuCLZ #data type #mining #transaction
False Positive or False Negative: Mining Frequent Itemsets from High Speed Transactional Data Streams (JXY, ZC, HL, AZ), pp. 204–215.
SCAMSCAM-2004-WahlerSGF #clone detection #detection #source code
Clone Detection in Source Code by Frequent Itemset Techniques (VW, DS, JWvG, GF), pp. 128–135.
KDDKDD-2004-JaroszewiczS #network #using
Interestingness of frequent itemsets using Bayesian networks as background knowledge (SJ, DAS), pp. 178–186.
KDDKDD-2004-SeppanenM
Dense itemsets (JKS, HM), pp. 683–688.
KDDKDD-2004-Yang #complexity #mining
The complexity of mining maximal frequent itemsets and maximal frequent patterns (GY), pp. 344–353.
SEKESEKE-2004-LiLCWL #using
Extracting Minimal Non-Redundant Implication Rules by Using Quantized Closed Itemset Lattice (YL, ZL, WC, QW, WL), pp. 402–405.
SACSAC-2004-Goethals #memory management #mining
Memory issues in frequent itemset mining (BG), pp. 530–534.
SACSAC-2004-MassonRB #database #induction #optimisation #query #set #towards
Optimizing subset queries: a step towards SQL-based inductive databases for itemsets (CM, CR, JFB), pp. 535–539.
SACSAC-2004-Savinov #dependence #mining
Mining dependence rules by finding largest itemset support quota (AAS), pp. 525–529.
PODSPODS-2003-RameshMZ #data mining #mining #theory and practice
Feasible itemset distributions in data mining: theory and application (GR, WM, MJZ), pp. 284–295.
CIKMCIKM-2003-ChangL #adaptation #data type #monitoring #named #online
estWin: adaptively monitoring the recent change of frequent itemsets over online data streams (JHC, WSL), pp. 536–539.
KDDKDD-2003-ChangL #adaptation #data type #online
Finding recent frequent itemsets adaptively over online data streams (JHC, WSL), pp. 487–492.
KDDKDD-2003-WangHP #mining
CLOSET+: searching for the best strategies for mining frequent closed itemsets (JW, JH, JP), pp. 236–245.
SACSAC-2003-JiaPP #constraints #mining
Tough Constraint-Based Frequent Closed Itemsets Mining (LJ, RP, DP), pp. 416–420.
KDDKDD-2002-BucilaGKW #algorithm #constraints #named
DualMiner: a dual-pruning algorithm for itemsets with constraints (CB, JG, DK, WMW), pp. 42–51.
KDDKDD-2001-YangFB #performance
Efficient discovery of error-tolerant frequent itemsets in high dimensions (CY, UMF, PSB), pp. 194–203.
PODSPODS-2000-MorishitaS #metric #statistics #traversal
Traversing Itemset Lattice with Statistical Metric Pruning (SM, JS), pp. 226–236.
VLDBVLDB-2000-WangHH #constraints #mining #using
Mining Frequent Itemsets Using Support Constraints (KW, YH, JH), pp. 43–52.
ICLPCL-2000-BastidePTSL #mining #using
Mining Minimal Non-redundant Association Rules Using Frequent Closed Itemsets (YB, NP, RT, GS, LL), pp. 972–986.
KDDKDD-1999-AyanTA #algorithm #performance #scalability
An Efficient Algorithm to Update Large Itemsets with Early Pruning (NFA, AUT, MEA), pp. 287–291.
KDDKDD-1999-MeretakisW #classification #naive bayes #using
Extending Naïve Bayes Classifiers Using Long Itemsets (DM, BW), pp. 165–174.
PODSPODS-1998-AggarwalY #framework #generative
A New Framework For Itemset Generation (CCA, PSY), pp. 18–24.
CIKMCIKM-1998-Tang #incremental #performance #using
Using Incremental Pruning to Increase the Efficiency of Dynamic Itemset Counting for Association Rules (JT), pp. 273–280.
SIGMODSIGMOD-1997-BrinMUT
Dynamic Itemset Counting and Implication Rules for Market Basket Data (SB, RM, JDU, ST), pp. 255–264.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.