Proceedings of the Eighth Conference on Recommender Systems
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter

Alfred Kobsa, Michelle X. Zhou, Martin Ester, Yehuda Koren
Proceedings of the Eighth Conference on Recommender Systems
RecSys, 2014.

KER
DBLP
Scholar
Full names Links ISxN
@proceedings{RecSys-2014,
	acmid         = "2645710",
	address       = "Silicon Valley, California, USA",
	editor        = "Alfred Kobsa and Michelle X. Zhou and Martin Ester and Yehuda Koren",
	isbn          = "978-1-4503-2668-1",
	publisher     = "{ACM}",
	title         = "{Proceedings of the Eighth Conference on Recommender Systems}",
	year          = 2014,
}

Contents (79 items)

RecSys-2014-BastianHVSSKUL #scalability #topic
LinkedIn skills: large-scale topic extraction and inference (MB, MH, WV, SS, PS, HJK, SU, CL), pp. 1–8.
RecSys-2014-PeraN14a #automation #recommendation
Automating readers’ advisory to make book recommendations for K-12 readers (MSP, YKN), pp. 9–16.
RecSys-2014-YuanMZS #predict #sentiment
Exploiting sentiment homophily for link prediction (GY, PKM, ZZ, MPS), pp. 17–24.
RecSys-2014-LiuSM #robust
A robust model for paper reviewer assignment (XL, TS, NDM), pp. 25–32.
RecSys-2014-TavakolB #detection #topic
Factored MDPs for detecting topics of user sessions (MT, UB), pp. 33–40.
RecSys-2014-HaririMB #adaptation #interactive #recommendation
Context adaptation in interactive recommender systems (NH, BM, RDB), pp. 41–48.
RecSys-2014-YangAR #constraints #online #recommendation
Question recommendation with constraints for massive open online courses (DY, DA, CPR), pp. 49–56.
RecSys-2014-SeminarioW #recommendation
Attacking item-based recommender systems with power items (CES, DCW), pp. 57–64.
RecSys-2014-BhagatWIT #learning #matrix #recommendation #using
Recommending with an agenda: active learning of private attributes using matrix factorization (SB, UW, SI, NT), pp. 65–72.
RecSys-2014-TangJLL #personalisation #recommendation
Ensemble contextual bandits for personalized recommendation (LT, YJ, LL, TL), pp. 73–80.
RecSys-2014-TrevisiolASJ #graph #recommendation
Cold-start news recommendation with domain-dependent browse graph (MT, LMA, RS, AJ), pp. 81–88.
RecSys-2014-SaveskiM #learning #recommendation
Item cold-start recommendations: learning local collective embeddings (MS, AM), pp. 89–96.
RecSys-2014-LiuGWB #power of #using
Improving the discriminative power of inferred content information using segmented virtual profile (HL, AG, TW, AB), pp. 97–104.
RecSys-2014-LingLK #approach #recommendation
Ratings meet reviews, a combined approach to recommend (GL, MRL, IK), pp. 105–112.
RecSys-2014-YiHZLR #personalisation
Beyond clicks: dwell time for personalization (XY, LH, EZ, NNL, SR), pp. 113–120.
RecSys-2014-KluverK #behaviour #recommendation
Evaluating recommender behavior for new users (DK, JAK), pp. 121–128.
RecSys-2014-SaidB #benchmark #comparative #evaluation #framework #metric #recommendation
Comparative recommender system evaluation: benchmarking recommendation frameworks (AS, AB), pp. 129–136.
RecSys-2014-KrishnanPFG #bias #learning #recommendation #social
A methodology for learning, analyzing, and mitigating social influence bias in recommender systems (SK, JP, MJF, KG), pp. 137–144.
RecSys-2014-VargasC #recommendation
Improving sales diversity by recommending users to items (SV, PC), pp. 145–152.
RecSys-2014-AdamopoulosT14a #bias #collaboration #on the #probability #recommendation
On over-specialization and concentration bias of recommendations: probabilistic neighborhood selection in collaborative filtering systems (PA, AT), pp. 153–160.
RecSys-2014-EkstrandHWK #algorithm #difference #recommendation
User perception of differences in recommender algorithms (MDE, FMH, MCW, JAK), pp. 161–168.
RecSys-2014-GarcinFDABH #evaluation #online #recommendation
Offline and online evaluation of news recommender systems at swissinfo.ch (FG, BF, OD, AA, CB, AH), pp. 169–176.
RecSys-2014-VerstrepenG #collaboration #nearest neighbour
Unifying nearest neighbors collaborative filtering (KV, BG), pp. 177–184.
RecSys-2014-Liu0L #recommendation
Recommending user generated item lists (YL, MX, LVSL), pp. 185–192.
RecSys-2014-PedroK #collaboration #recommendation
Question recommendation for collaborative question answering systems with RankSLDA (JSP, AK), pp. 193–200.
RecSys-2014-KimC #collaboration #predict
Bayesian binomial mixture model for collaborative prediction with non-random missing data (YDK, SC), pp. 201–208.
RecSys-2014-VargasBKC #recommendation
Coverage, redundancy and size-awareness in genre diversity for recommender systems (SV, LB, AK, PC), pp. 209–216.
RecSys-2014-LiuA #framework #recommendation #towards
Towards a dynamic top-N recommendation framework (XL, KA), pp. 217–224.
RecSys-2014-VanchinathanNBK #process #recommendation
Explore-exploit in top-N recommender systems via Gaussian processes (HPV, IN, FDB, AK), pp. 225–232.
RecSys-2014-GueyeAN #algorithm #recommendation
A parameter-free algorithm for an optimized tag recommendation list size (MG, TA, HN), pp. 233–240.
RecSys-2014-PetroniQ #clustering #distributed #graph #matrix #named #probability
GASGD: stochastic gradient descent for distributed asynchronous matrix completion via graph partitioning (FP, LQ), pp. 241–248.
RecSys-2014-BauerN #framework #matrix
A framework for matrix factorization based on general distributions (JB, AN), pp. 249–256.
RecSys-2014-BachrachFGKKNP #recommendation #using
Speeding up the Xbox recommender system using a euclidean transformation for inner-product spaces (YB, YF, RGB, LK, NK, NN, UP), pp. 257–264.
RecSys-2014-ChengXZKL
Gradient boosting factorization machines (CC, FX, TZ, IK, MRL), pp. 265–272.
RecSys-2014-PalovicsBKKF #online #recommendation
Exploiting temporal influence in online recommendation (RP, AAB, LK, TK, EF), pp. 273–280.
RecSys-2014-LoniSLH #collaboration
“Free lunch” enhancement for collaborative filtering with factorization machines (BL, AS, ML, AH), pp. 281–284.
RecSys-2014-NoiaORTS #analysis #recommendation #towards
An analysis of users’ propensity toward diversity in recommendations (TDN, VCO, JR, PT, EDS), pp. 285–288.
RecSys-2014-SuiB #feedback #online #rank #recommendation
Clinical online recommendation with subgroup rank feedback (YS, JWB), pp. 289–292.
RecSys-2014-Aiolli #feedback #optimisation #recommendation
Convex AUC optimization for top-N recommendation with implicit feedback (FA), pp. 293–296.
RecSys-2014-CremonesiQ #question #recommendation
Cross-domain recommendations without overlapping data: myth or reality? (PC, MQ), pp. 297–300.
RecSys-2014-ZhengMB #algorithm #named #recommendation
CSLIM: contextual SLIM recommendation algorithms (YZ, BM, RDB), pp. 301–304.
RecSys-2014-HarmanOAG #recommendation #trust
Dynamics of human trust in recommender systems (JLH, JO, TFA, CG), pp. 305–308.
RecSys-2014-NeidhardtSSW #elicitation
Eliciting the users’ unknown preferences (JN, RS, LS, HW), pp. 309–312.
RecSys-2014-WaldnerV #exclamation #game studies #recommendation #timeline #twitter
Emphasize, don’t filter!: displaying recommendations in Twitter timelines (WW, JV), pp. 313–316.
RecSys-2014-FazeliLBDS #matrix #social #trust
Implicit vs. explicit trust in social matrix factorization (SF, BL, AB, HD, PBS), pp. 317–320.
RecSys-2014-RafailidisN #modelling
Modeling the dynamics of user preferences in coupled tensor factorization (DR, AN), pp. 321–324.
RecSys-2014-DalyBKM #multi #recommendation
Multi-criteria journey aware housing recommender system (EMD, AB, AK, RM), pp. 325–328.
RecSys-2014-AdamsSBKHM #collaboration #health #named
PERSPeCT: collaborative filtering for tailored health communications (RJA, RSS, KB, RLK, TKH, BMM), pp. 329–332.
RecSys-2014-DeryKRS #elicitation #recommendation
Preference elicitation for narrowing the recommended list for groups (LND, MK, LR, BS), pp. 333–336.
RecSys-2014-JannachF #data mining #mining #modelling #process #recommendation
Recommendation-based modeling support for data mining processes (DJ, SF), pp. 337–340.
RecSys-2014-ZhangOFL #modelling #network #scalability #social
Scalable audience targeted models for brand advertising on social networks (KZ, AMO, SF, HL), pp. 341–344.
RecSys-2014-SedhainSBXC #collaboration #recommendation #social
Social collaborative filtering for cold-start recommendations (SS, SS, DB, LX, JC), pp. 345–348.
RecSys-2014-BraunhoferCR #hybrid #recommendation
Switching hybrid for cold-starting context-aware recommender systems (MB, VC, FR), pp. 349–352.
RecSys-2014-LercheJ #feedback #personalisation #ranking #using
Using graded implicit feedback for bayesian personalized ranking (LL, DJ), pp. 353–356.
RecSys-2014-BhattacharyaZGGG #network #social #twitter
Inferring user interests in the Twitter social network (PB, MBZ, NG, SG, KPG), pp. 357–360.
RecSys-2014-SureshRE #mining #recommendation
Aspect-based opinion mining and recommendationsystem for restaurant reviews (VS, SR, ME), pp. 361–362.
RecSys-2014-Ben-ShimonTFH #as a service #configuration management #monitoring #recommendation
Configuring and monitoring recommender system as a service (DBS, AT, MF, JH), pp. 363–364.
RecSys-2014-GingerichA
Content ordering based on commuting patterns (TG, OA), pp. 365–366.
RecSys-2014-KellerR #e-commerce #framework #named #platform #recommendation
Cosibon: an E-commerce like platform enabling bricks-and-mortar stores to use sophisticated product recommender systems (TK, MR), pp. 367–368.
RecSys-2014-GarcinGF #mobile #named #personalisation
Focal: a personalized mobile news reader (FG, FG, BF), pp. 369–370.
RecSys-2014-SaidB14a #evaluation #named #recommendation #tool support
Rival: a toolkit to foster reproducibility in recommender system evaluation (AS, AB), pp. 371–372.
RecSys-2014-BadenesBCGHMNPSSXYZ #automation #people #recommendation #social #social media
System U: automatically deriving personality traits from social media for people recommendation (HB, MNB, JC, LG, EMH, JM, JWN, AP, JS, BAS, YX, HY, MXZ), pp. 373–374.
RecSys-2014-LiuWW #what
Tell me where to go and what to do next, but do not bother me (HL, GW, GW), pp. 375–376.
RecSys-2014-LoniS #library #named #recommendation
WrapRec: an easy extension of recommender system libraries (BL, AS), pp. 377–378.
RecSys-2014-SaidDLT #challenge #recommendation
Recommender systems challenge 2014 (AS, SD, BL, DT), pp. 387–388.
RecSys-2014-XuPA #predict #ranking #recommendation
Controlled experimentation in recommendations, ranking & response prediction (YX, RP, JA), p. 389.
RecSys-2014-Amatriain #problem #recommendation #revisited
The recommender problem revisited (XA), pp. 397–398.
RecSys-2014-GaoTL #network #personalisation #recommendation #social
Personalized location recommendation on location-based social networks (HG, JT, HL), pp. 399–400.
RecSys-2014-CantadorC #recommendation #tutorial
Tutorial on cross-domain recommender systems (IC, PC), pp. 401–402.
RecSys-2014-GuyG #recommendation #social #tutorial
Social recommender system tutorial (IG, WG), pp. 403–404.
RecSys-2014-Braunhofer #recommendation
Hybridisation techniques for cold-starting context-aware recommender systems (MB), pp. 405–408.
RecSys-2014-Christakopoulou #independence #recommendation
Moving beyond linearity and independence in top-N recommender systems (EC), pp. 409–412.
RecSys-2014-Mayeku #personalisation #recommendation
Enhancing personalization and learner engagement through context-aware recommendation in TEL (BM), pp. 413–415.
RecSys-2014-Nguyen #lifecycle #recommendation
Improving recommender systems: user roles and lifecycles (TTN), pp. 417–420.
RecSys-2014-Sharma #modelling #people #social
Modeling the effect of people’s preferences and social forces on adopting and sharing items (AS), pp. 421–424.
RecSys-2014-Stettinger #independence #named #towards
Choicla: towards domain-independent decision support for groups of users (MS), pp. 425–428.
RecSys-2014-Vahedian #hybrid #network #recommendation
Weighted hybrid recommendation for heterogeneous networks (FV), pp. 429–432.
RecSys-2014-Zhang #recommendation
Browser-oriented universal cross-site recommendation and explanation based on user browsing logs (YZ), pp. 433–436.
RecSys-2014-Zheng #algorithm #recommendation #similarity
Deviation-based and similarity-based contextual SLIM recommendation algorithms (YZ), pp. 437–440.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.