Travelled to:
1 × Canada
2 × USA
Collaborated with:
R.G.0001 R.Gupta S.C.Koduru Zachary Benavides G.(.Xu Chengshuo Xu F.Khorasani L.N.Bhuyan C.T.0002 Z.Hu W.Lee T.Bao Y.Zheng X.Zhang
Talks about:
graph (4) point (3) distribut (2) asynchron (2) process (2) iter (2) algorithm (1) recoveri (1) parallel (1) guarante (1)
Person: Keval Vora
DBLP: Vora:Keval
Contributed to:
Wrote 7 papers:
- OOPSLA-2015-LeeBZZVG #assessment #float #named #runtime
- RAIVE: runtime assessment of floating-point instability by vectorization (WCL, TB, YZ, XZ, KV, RG), pp. 623–638.
- HPDC-2014-KhorasaniVGB #graph #named
- CuSha: vertex-centric graph processing on GPUs (FK, KV, RG, LNB), pp. 239–252.
- OOPSLA-2014-VoraKG #algorithm #consistency #named #parallel #using
- ASPIRE: exploiting asynchronous parallelism in iterative algorithms using a relaxed consistency based DSM (KV, SCK, RG), pp. 861–878.
- OOPSLA-2019-BenavidesV0 #distributed #named #profiling
- DProf: distributed profiler with strong guarantees (ZB, KV, RG0), p. 24.
- ASPLOS-2017-VoraGX #approximate #graph #named #performance #streaming
- KickStarter: Fast and Accurate Computations on Streaming Graphs via Trimmed Approximations (KV, RG0, G(X), pp. 237–251.
- ASPLOS-2017-VoraTGH #distributed #graph #named
- CoRAL: Confined Recovery in Distributed Asynchronous Graph Processing (KV, CT0, RG0, ZH), pp. 223–236.
- ASPLOS-2019-XuV0 #graph #named #predict
- PnP: Pruning and Prediction for Point-To-Point Iterative Graph Analytics (CX, KV, RG0), pp. 587–600.