Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter

Iris Bahar, Maurice Herlihy, Emmett Witchel, Alvin R. Lebeck
Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems
ASPLOS, 2019.

SYS
DBLP
Scholar
DOI
Full names Links ISxN
@proceedings{ASPLOS-2019,
	doi           = "10.1145/3297858",
	editor        = "Iris Bahar and Maurice Herlihy and Emmett Witchel and Alvin R. Lebeck",
	isbn          = "978-1-4503-6240-5",
	publisher     = "{ACM}",
	title         = "{Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems}",
	year          = 2019,
}

Contents (76 items)

ASPLOS-2019-Liskov #manycore #named #programming
Keynote: Multicore Programming (BL), p. 1.
ASPLOS-2019-Svore #named #quantum
Keynote: Developing our Quantum Future (KMS), p. 2.
ASPLOS-2019-GanZCSRKBHRJHPH #benchmark #metric #open source
An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems (YG0, YZ, DC, AS, PR, NK, AB, JH, BR, BJ, KH, MP, YH, BC, CC, FW, CL, SW, LZ, ME, RL, ZL, JP, CD), pp. 3–18.
ASPLOS-2019-GanZHCHPD #big data #complexity #debugging #named #performance
Seer: Leveraging Big Data to Navigate the Complexity of Performance Debugging in Cloud Microservices (YG0, YZ, KH, DC, YH, MP, CD), pp. 19–33.
ASPLOS-2019-DaglisSF #named
RPCValet: NI-Driven Tail-Aware Balancing of µs-Scale RPCs (AD, MS, BF), pp. 35–48.
ASPLOS-2019-0015ARZMGY #framework #memory management
A Framework for Memory Oversubscription Management in Graphics Processing Units (CL0, RA, CJR, YZ, OM, YG0, JY0), pp. 49–63.
ASPLOS-2019-PhothilimthanaE #data flow #gpu #kernel #synthesis
Swizzle Inventor: Data Movement Synthesis for GPU Kernels (PMP, ASE, AW0, AJ, BH, HB, SJK, VG, ET, RB), pp. 65–78.
ASPLOS-2019-JiangSF0 #approach #parallel #scalability
Scalable Processing of Contemporary Semi-Structured Data on Commodity Parallel Processors - A Compilation-based Approach (LJ, XS, UF, ZZ0), pp. 79–92.
ASPLOS-2019-ZhangZWLFZS #framework #performance #scalability
Fast and Scalable VMM Live Upgrade in Large Cloud Infrastructure (XZ, XZ, ZW0, QL0, JF, YZ, YS), pp. 93–105.
ASPLOS-2019-ChenDM #clustering #interactive #multi #named
PARTIES: QoS-Aware Resource Partitioning for Multiple Interactive Services (SC, CD, JFM), pp. 107–120.
ASPLOS-2019-ShenSSBDRW #named #performance
X-Containers: Breaking Down Barriers to Improve Performance and Isolation of Cloud-Native Containers (ZS, ZS, GES, EB, CD, RvR, HW), pp. 121–135.
ASPLOS-2019-PellauerSCCHVKF #composition #distributed #named #performance
Buffets: An Efficient and Composable Storage Idiom for Explicit Decoupled Data Orchestration (MP, YSS, JC, NCC, KH, RV, SWK, CWF, JSE), pp. 137–151.
ASPLOS-2019-ZhengOZSYC #framework #named #performance #pipes and filters
HiWayLib: A Software Framework for Enabling High Performance Communications for Heterogeneous Pipeline Computations (ZZ, CO, JZ, XS, YY, WC), pp. 153–166.
ASPLOS-2019-MiaoJPML #hybrid #memory management #named
StreamBox-HBM: Stream Analytics on High Bandwidth Hybrid Memory (HM, MJ, GP, KSM, FXL), pp. 167–181.
ASPLOS-2019-WillseySTVNPBNJ #framework #named #platform
Puddle: A Dynamic, Error-Correcting, Full-Stack Microfluidics Platform (MW, APS, CT, PV, BHN, MP, CB, SN, SJ, KS, LC), pp. 183–197.
ASPLOS-2019-GobieskiLB #embedded
Intelligence Beyond the Edge: Inference on Intermittent Embedded Systems (GG, BL, NB), pp. 199–213.
ASPLOS-2019-TzimpragosMVSS #classification #energy
Boosted Race Trees for Low Energy Classification (GT, AM, DV, DBS, TS), pp. 215–228.
ASPLOS-2019-Tsai0 #memory management
Compress Objects, Not Cache Lines: An Object-Based Compressed Memory Hierarchy (PAT, DS0), pp. 229–242.
ASPLOS-2019-LiPWTZDC #statistics
Beating OPT with Statistical Clairvoyance and Variable Size Caching (PL, CP, WW, BT, JZ, CD, JC), pp. 243–256.
ASPLOS-2019-LustigSG #analysis #consistency #formal method #memory management
A Formal Analysis of the NVIDIA PTX Memory Consistency Model (DL, SS, OG), pp. 257–270.
ASPLOS-2019-SchkufzaWR #compilation #experience #programming
Just-In-Time Compilation for Verilog: A New Technique for Improving the FPGA Programming Experience (ES, MW, CJR), pp. 271–286.
ASPLOS-2019-BaiLTH #automation #detection #fault #kernel #linux #named
DCNS: Automated Detection Of Conservative Non-Sleep Defects in the Linux Kernel (JJB, JL, WT, SMH0), pp. 287–299.
ASPLOS-2019-HuLH #mobile #resource management
A Case for Lease-Based, Utilitarian Resource Management on Mobile Devices (YH, SL, PH), pp. 301–315.
ASPLOS-2019-Lagar-CavillaAS #memory management
Software-Defined Far Memory in Warehouse-Scale Computers (HALC, JA, SS, NA, RB, SB, JC, AC, ND, JS, GT, KAY, YZ, PR), pp. 317–330.
ASPLOS-2019-YanLNB #memory management
Nimble Page Management for Tiered Memory Systems (ZY, DL, DWN, AB), pp. 331–345.
ASPLOS-2019-PanwarBG #fine-grained #named #performance
HawkEye: Efficient Fine-grained OS Support for Huge Pages (AP, SB, KG), pp. 347–360.
ASPLOS-2019-ZhangGFABNOA #architecture #security
Architectural Support for Containment-based Security (HZ, SG, JF, SA, SRB, NPN, TO, DIA), pp. 361–377.
ASPLOS-2019-DavisWRNMBCCFGJ #c #named #pointer #runtime
CheriABI: Enforcing Valid Pointer Provenance and Minimizing Pointer Privilege in the POSIX C Run-time Environment (BD, RNMW, AR, PGN, SWM, JB, DC, JC, NWF, KG, AJ, BL, ATM, JEM, AM, ETN, RMN, MR, PS, SDS, JW), pp. 379–393.
ASPLOS-2019-TaramVT #execution
Context-Sensitive Fencing: Securing Speculative Execution via Microcode Customization (MT, AV, DMT), pp. 395–410.
ASPLOS-2019-0001WZKK #flexibility #framework #memory management #named #performance #persistent #source code #testing
PMTest: A Fast and Flexible Testing Framework for Persistent Memory Programs (SL0, YW, JZ, AK, SMK), pp. 411–425.
ASPLOS-2019-XuKMS #memory management #performance #persistent
Finding and Fixing Performance Pathologies in Persistent Memory Software Stacks (JX0, JK, AM, SS), pp. 427–439.
ASPLOS-2019-CohenAAL
Fine-Grain Checkpointing with In-Cache-Line Logging (NC, DTA, HA, JRL), pp. 441–454.
ASPLOS-2019-JangTKSH #execution
Heterogeneous Isolated Execution for Commodity GPUs (IJ, AT, TK, SS, JH), pp. 455–468.
ASPLOS-2019-GallagherBCAYAH #architecture #named
Morpheus: A Vulnerability-Tolerant Secure Architecture Based on Ensembles of Moving Target Defenses with Churn (MG, LB, SC, ZBA, SFY, MTA, AH, ZX, BK, VB, SM, MT, TMA), pp. 469–484.
ASPLOS-2019-RouhaniCK #framework #named #network
DeepSigns: An End-to-End Watermarking Framework for Ownership Protection of Deep Neural Networks (BDR, HC, FK), pp. 485–497.
ASPLOS-2019-ChoOPJL #learning #named
FA3C: FPGA-Accelerated Deep Reinforcement Learning (HC, PO, JP, WJ, JL), pp. 499–513.
ASPLOS-2019-BanerjeeKI #algorithm #markov #modelling #monte carlo #probability
AcMC 2 : Accelerating Markov Chain Monte Carlo Algorithms for Probabilistic Models (SSB, ZTK, RKI), pp. 515–528.
ASPLOS-2019-Pakin #quantum
Targeting Classical Code to a Quantum Annealer (SP), pp. 529–543.
ASPLOS-2019-BhatKBG #named #program transformation
ProbeGuard: Mitigating Probing Attacks Through Reactive Program Transformations (KB, EvdK, HB, CG), pp. 545–558.
ASPLOS-2019-OsterlundKOBBG #detection #execution #kernel #multi #named
kMVX: Detecting Kernel Information Leaks with Multi-variant Execution (, KK, PO, AB, HB, CG), pp. 559–572.
ASPLOS-2019-PinaA0C #execution #multi #named
MVEDSUA: Higher Availability Dynamic Software Updates via Multi-Version Execution (LP, AA, MH0, CC), pp. 573–585.
ASPLOS-2019-XuV0 #graph #named #predict
PnP: Pruning and Prediction for Point-To-Point Iterative Graph Analytics (CX, KV, RG0), pp. 587–600.
ASPLOS-2019-ZhangL0HLG #graph #multi #named #performance
DiGraph: An Efficient Path-based Iterative Directed Graph Processing System on Multiple GPUs (YZ0, XL, HJ0, BH, HL, LG0), pp. 601–614.
ASPLOS-2019-DathathriGHP #distributed #graph #named
Phoenix: A Substrate for Resilient Distributed Graph Analytics (RD, GG, LH, KP), pp. 615–630.
ASPLOS-2019-ZhangLJ #memory management #named #safety
BOGO: Buy Spatial Memory Safety, Get Temporal Memory Safety (Almost) Free (TZ, DL, CJ), pp. 631–644.
ASPLOS-2019-WuSCL #pointer #using
Protecting Page Tables from RowHammer Attacks using Monotonic Pointers in DRAM True-Cells (XCW, TS, FTC, YL), pp. 645–657.
ASPLOS-2019-NagarajanSBT #named
ρ: Relaxed Hierarchical ORAM (CN, AS, RB, MT), pp. 659–671.
ASPLOS-2019-0002R #architecture #latency #throughput
uops.info: Characterizing Latency, Throughput, and Port Usage of Instructions on Intel Microarchitectures (AA0, JR), pp. 673–686.
ASPLOS-2019-KondguliH #hardware #named #performance #smt #thread #using
Bootstrapping: Using SMT Hardware to Improve Single-Thread Performance (SK, MH), pp. 687–700.
ASPLOS-2019-EsfedenKJWA #named
CORF: Coalescing Operand Register File for GPUs (HAE, FK, HJ, DW0, NBAG), pp. 701–714.
ASPLOS-2019-AnkitHCNFWFHS0M #machine learning #named #programmable
PUMA: A Programmable Ultra-efficient Memristor-based Accelerator for Machine Learning Inference (AA, IEH, SRC, GN, MF, RSW, PF, WmWH, JPS, KR0, DSM), pp. 715–731.
ASPLOS-2019-JiZXLWHZX #architecture #configuration management #named #stack
FPSA: A Full System Stack Solution for Reconfigurable ReRAM-based NN Accelerator Architecture (YJ0, YZ, XX, SL, PW0, XH0, YZ, YX0), pp. 733–747.
ASPLOS-2019-LascorzJSPMSNSM #approach #hardware #named #network
Bit-Tactical: A Software/Hardware Approach to Exploiting Value and Bit Sparsity in Neural Networks (ADL, PJ, DMS, ZP, MM, SS, MN, KS, AM), pp. 749–763.
ASPLOS-2019-TangZQC #architecture #message passing #named #performance
pLock: A Fast Lock for Architectures with Explicit Inter-core Message Passing (XT, JZ, XQ, WC), pp. 765–778.
ASPLOS-2019-KimMKRM #multi #named #scalability
MV-RLU: Scaling Read-Log-Update with Multi-Versioning (JK, AM, SK, MKR, CM), pp. 779–792.
ASPLOS-2019-WangFL #fine-grained #performance
Fast Fine-Grained Global Synchronization on GPUs (KW, DF, CL), pp. 793–806.
ASPLOS-2019-GaoYPHK #data flow #named #scalability
TANGRAM: Optimized Coarse-Grained Dataflow for Scalable NN Accelerators (MG, XY, JP, MH, CK), pp. 807–820.
ASPLOS-2019-KungMZ #array #implementation #network #optimisation #performance
Packing Sparse Convolutional Neural Networks for Efficient Systolic Array Implementations: Column Combining Under Joint Optimization (HTK, BM, SQZ), pp. 821–834.
ASPLOS-2019-JinH #memory management #named #network #optimisation
Split-CNN: Splitting Window-based Operations in Convolutional Neural Networks for Memory System Optimization (TJ, SH), pp. 835–847.
ASPLOS-2019-FernandoFAMT #approximate #manycore #named
Replica: A Wireless Manycore for Communication-Intensive and Approximate Data (VF, AF, SA, SM, JT), pp. 849–863.
ASPLOS-2019-TuLSZ #comprehension #concurrent #debugging
Understanding Real-World Concurrency Bugs in Go (TT, XL, LS, YZ), pp. 865–878.
ASPLOS-2019-MerrifieldRDE #lazy evaluation #multi #performance #thread
Lazy Determinism for Faster Deterministic Multithreading (TM, SR, JD, JE), pp. 879–891.
ASPLOS-2019-LuoLZQ #distributed #named
Hop: Heterogeneity-aware Decentralized Training (QL, JL, YZ, XQ), pp. 893–907.
ASPLOS-2019-SivathanuCSZ #learning #named #predict
Astra: Exploiting Predictability to Optimize Deep Learning (MS, TC, SSS, LZ), pp. 909–923.
ASPLOS-2019-RenZYLXQLW #co-evolution #design #framework #multi #named #using
ADMM-NN: An Algorithm-Hardware Co-Design Framework of DNNs Using Alternating Direction Methods of Multipliers (AR, TZ, SY, JL, WX, XQ, XL, YW), pp. 925–938.
ASPLOS-2019-ChungKIAL #named
LightStore: Software-defined Network-attached Key-value Drives (CC, JK, JI, A, SL), pp. 939–953.
ASPLOS-2019-LiuKJKD #3d
SOML Read: Rethinking the Read Operation Granularity of 3D NAND SSDs (CYL, JBK, MJ, MTK, CRD), pp. 955–969.
ASPLOS-2019-AbulilaMQHKXH #named
FlatFlash: Exploiting the Byte-Accessibility of SSDs within a Unified Memory-Storage Hierarchy (AHMOA, VSM, ZQ, JH0, NSK, JX, WMWH), pp. 971–985.
ASPLOS-2019-TannuQ #policy #quantum #variability
Not All Qubits Are Created Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers (SST, MKQ), pp. 987–999.
ASPLOS-2019-LiDX #problem #quantum
Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices (GL, YD, YX0), pp. 1001–1014.
ASPLOS-2019-MuraliBJCM #adaptation #compilation #quantum
Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers (PM, JMB, AJA, FTC, MM), pp. 1015–1029.
ASPLOS-2019-ShiLGRSHC #compilation #quantum
Optimized Compilation of Aggregated Instructions for Realistic Quantum Computers (YS, NL, PG, ZR, DIS, HH, FTC), pp. 1031–1044.
ASPLOS-2019-LehmannP #framework #named
Wasabi: A Framework for Dynamically Analyzing WebAssembly (DL0, MP), pp. 1045–1058.
ASPLOS-2019-DangwalCMS #behaviour
Safer Program Behavior Sharing Through Trace Wringing (DD, WC, JM, TS), pp. 1059–1072.
ASPLOS-2019-CasiasATSW #debugging #pattern matching
Debugging Support for Pattern-Matching Languages and Accelerators (MC, KA, TTI, KS, WW), pp. 1073–1086.
ASPLOS-2019-MahmoudVAMMFA #adaptation #fault #hardware #named #testing
Minotaur: Adapting Software Testing Techniques for Hardware Errors (AM, RV, KA, SM, DM, CWF, SVA), pp. 1087–1103.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.