Travelled to:
1 × China
1 × Turkey
3 × USA
Collaborated with:
J.Mars M.L.Soffa M.A.Laurenzano C.Hsu Y.Zhang Quan Chen 0002 Hailong Yang Q.Deng J.Hauswald A.Rovinski T.N.Mudge V.Petrucci R.G.Dreslinski W.Wang T.Dey X.Zhang R.Hagmann R.Hundt E.Tune Parker Hill M.Samadi S.A.Mahlke M.Guo Ram Srivatsa Kannan J.Doherty D.Mossé Y.Kang Cao Gao Shih-Chieh Lin Matt Skach Md Enamul Haque D.Meisner T.F.Wenisch C.Li A.Khurana
Talks about:
scale (8) warehous (7) comput (7) acceler (3) util (3) preemptiv (2) improv (2) implic (2) compil (2) power (2)
Person: Lingjia Tang
DBLP: Tang:Lingjia
Contributed to:
Wrote 12 papers:
- ASPLOS-2015-HauswaldLZLRKDM #named
- Sirius: An Open End-to-End Voice and Vision Personal Assistant and Its Implications for Future Warehouse Scale Computers (JH, MAL, YZ, CL, AR, AK, RGD, TNM, VP, LT, JM), pp. 223–238.
- HPCA-2015-HsuZLMWMTD #named #query
- Adrenaline: Pinpointing and reining in tail queries with quick voltage boosting (CHH, YZ, MAL, DM, TFW, JM, LT, RGD), pp. 271–282.
- HPCA-2015-PetrucciLDZMMT #multi #named
- Octopus-Man: QoS-driven task management for heterogeneous multicores in warehouse-scale computers (VP, MAL, JD, YZ, DM, JM, LT), pp. 246–258.
- ASPLOS-2013-TangMWDS #compilation #named
- ReQoS: reactive static/dynamic compilation for QoS in warehouse scale computers (LT, JM, WW, TD, MLS), pp. 89–100.
- HPCA-2013-TangMZHHT #experience #optimisation
- Optimizing Google’s warehouse scale computers: The NUMA experience (LT, JM, XZ, RH, RH, ET), pp. 188–197.
- CGO-2012-TangMS #compilation
- Compiling for niceness: mitigating contention for QoS in warehouse scale computers (LT, JM, MLS), pp. 1–12.
- PLDI-2016-LaurenzanoHSMMT #approximate #latency #using
- Input responsiveness: using canary inputs to dynamically steer approximation (MAL, PH, MS, SAM, JM, LT), pp. 161–176.
- ASPLOS-2016-ChenYMT #named
- Baymax: QoS Awareness and Increased Utilization for Non-Preemptive Accelerators in Warehouse Scale Computers (QC0, HY, JM, LT), pp. 681–696.
- ASPLOS-2017-ChenYGKMT #named #precise #predict
- Prophet: Precise QoS Prediction on Non-Preemptive Accelerators to Improve Utilization in Warehouse-Scale Computers (QC0, HY, MG, RSK, JM, LT), pp. 17–32.
- ASPLOS-2017-KangHGRMMT #collaboration #mobile #named
- Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge (YK, JH, CG, AR, TNM, JM, LT), pp. 615–629.
- ASPLOS-2018-HsuDMT #named #scalability
- SmoothOperator: Reducing Power Fragmentation and Improving Power Utilization in Large-scale Datacenters (CHH, QD, JM, LT), pp. 535–548.
- ASPLOS-2018-LinZHSHTM #architecture #constraints
- The Architectural Implications of Autonomous Driving: Constraints and Acceleration (SCL, YZ, CHH, MS, MEH, LT, JM), pp. 751–766.