Travelled to:
1 × Australia
1 × Greece
1 × Ireland
1 × Italy
1 × Japan
1 × Korea
1 × Spain
9 × USA
Collaborated with:
U.Dayal R.Ladin M.Castellanos R.Ghosh V.Tam W.Yang S.E.Madnick H.D.Kim C.Zhai W.Wang E.Pinsky P.A.Bernstein B.Mann A.Mukherjee B.Liu T.A.Rietz D.Diermeier H.Garcia-Molina B.Kao M.Shan Z.Chen C.P.Sayers A.Simitsis G.Koutrika A.G.Gonzalez D.T.Cantu J.Han J.Pei B.Mortazavi-Asl Q.Chen A.Kumar J.Wang C.C.Limon S.K.Cha P.Anandan C.Mohan R.Rastogi V.Sikka H.C.Young S.Prasad A.Fard V.Gupta J.Martinez J.LeFevre V.Xu I.Roy M.Dekhil Y.Lu L.Zhang M.Schreiman
Talks about:
databas (6) topic (4) model (4) data (4) transact (3) use (3) challeng (2) textual (2) predict (2) pattern (2)
Person: Meichun Hsu
DBLP: Hsu:Meichun
Contributed to:
Wrote 19 papers:
- SIGMOD-2015-PrasadFGMLXHR #data transfer #distributed #performance #predict #scalability
- Large-scale Predictive Analytics in Vertica: Fast Data Transfer, Distributed Model Creation, and In-database Prediction (SP, AF, VG, JM, JL, VX, MH, IR), pp. 1657–1668.
- CIKM-2013-ChenMLHCG #topic #using
- Discovering coherent topics using general knowledge (ZC, AM, BL, MH, MC, RG), pp. 209–218.
- CIKM-2013-KimCHZRD #feedback #mining #modelling #topic
- Mining causal topics in text data: iterative topic modeling with time series feedback (HDK, MC, MH, CZ, TAR, DD), pp. 885–890.
- KDD-2013-MukherjeeKLWHCG #behaviour #using
- Spotting opinion spammers using behavioral footprints (AM, AK, BL, JW, MH, MC, RG), pp. 632–640.
- SIGIR-2013-KimCHZDG #ranking #summary
- Ranking explanatory sentences for opinion summarization (HDK, MC, MH, CZ, UD, RG), pp. 1069–1072.
- SIGMOD-2013-SayersSKGCH
- The farm: where pig scripts are bred and raised (CPS, AS, GK, AGG, DTC, MH), pp. 1025–1028.
- CIKM-2012-KimZRDHCL #mining #named #topic
- InCaToMi: integrative causal topic miner between textual and non-textual time series data (HDK, CZ, TAR, DD, MH, MC, CCL), pp. 2689–2691.
- SIGMOD-2011-CastellanosDHGDLZS #analysis #framework #named #platform #social
- LCI: a social channel analysis platform for live customer intelligence (MC, UD, MH, RG, MD, YL, LZ, MS), pp. 1049–1058.
- VLDB-2006-ChaAHMRSY #challenge #community #database #named
- Globalization: Challenges to Database Community (SKC, PA, MH, CM, RR, VS, HCY), p. 1140.
- VLDB-2001-DayalHL #coordination #process #roadmap #state of the art
- Business Process Coordination: State of the Art, Trends, and Open Issues (UD, MH, RL), pp. 3–13.
- KDD-2000-HanPMCDH #mining #named
- FreeSpan: frequent pattern-projected sequential pattern mining (JH, JP, BMA, QC, UD, MH), pp. 355–359.
- SIGMOD-1993-DayalGHKS #challenge #database #generative #monitoring
- Third Generation TP Monitors: A Database Challenge (UD, HGM, MH, BK, MCS), pp. 393–397.
- PODS-1991-WangPH #database #modelling
- Modeling Hot Spots In Database Systems (WhW, EP, MH), pp. 82–91.
- VLDB-1991-DayalHL #process #transaction
- A Transactional Model for Long-Running Activities (UD, MH, RL), pp. 113–122.
- PODS-1990-TamH #fine-grained #migration #transaction
- Token Transactions: Managing Fine-Grained Migration of Data (VOT, MH), pp. 344–356.
- SIGMOD-1990-BernsteinHM #implementation #using
- Implementing Recoverable Requests Using Queues (PAB, MH, BM), pp. 112–122.
- SIGMOD-1990-DayalHL #process #transaction
- Organizing Long-Running Activities with Triggers and Transactions (UD, MH, RL), pp. 204–214.
- VLDB-1986-HsuY #concurrent
- Concurrent Operations in Extendible Hashing (MH, WPY), pp. 241–247.
- PODS-1983-HsuM #composition #concurrent #database
- Hierarchical Database Decomposition — A Technique for Database Concurrency Control (MH, SEM), pp. 182–191.