Timos Sellis, Susan B. Davidson, Zachary G. Ives
Proceedings of the 33rd ACM SIGMOD International Conference on Management of Data
SIGMOD, 2015.
@proceedings{SIGMOD-2015, acmid = "2723372", address = "Victoria, Australia", editor = "Timos Sellis and Susan B. Davidson and Zachary G. Ives", isbn = "978-1-4503-2758-9", publisher = "{ACM}", title = "{Proceedings of the 33rd ACM SIGMOD International Conference on Management of Data}", year = 2015, }
Contents (168 items)
- SIGMOD-2015-Patel
- From Data to Insights @ Bare Metal Speed (JMP), p. 1.
- SIGMOD-2015-YanZHSMZM #detection #distributed #using
- Distributed Outlier Detection using Compressive Sensing (YY, JZ, BH, XS, JM, ZZ, TM), pp. 3–16.
- SIGMOD-2015-ZamanianBS #clustering #database #parallel
- Locality-aware Partitioning in Parallel Database Systems (EZ, CB, AS), pp. 17–30.
- SIGMOD-2015-FengLKX #in memory #layout #memory management #named
- ByteSlice: Pushing the Envelop of Main Memory Data Processing with a New Storage Layout (ZF, EL, BK, WX), pp. 31–46.
- SIGMOD-2015-AlexandrovKKSTK #parallel
- Implicit Parallelism through Deep Language Embedding (AA, AK, AK, FS, LT, OK, TH, VM), pp. 47–61.
- SIGMOD-2015-ChuBS #database #evaluation #parallel #performance #query #theory and practice
- From Theory to Practice: Efficient Join Query Evaluation in a Parallel Database System (SC, MB, DS), pp. 63–78.
- SIGMOD-2015-ElgamalYAMH #analysis #big data #component #distributed #named #platform #scalability
- sPCA: Scalable Principal Component Analysis for Big Data on Distributed Platforms (TE, MY, AA, WM, MH), pp. 79–91.
- SIGMOD-2015-YuSC #dependence #distributed #matrix #performance
- Exploiting Matrix Dependency for Efficient Distributed Matrix Computation (LY, YS, BC), pp. 93–105.
- SIGMOD-2015-TeflioudiGM #matrix #named #performance #retrieval #scalability
- LEMP: Fast Retrieval of Large Entries in a Matrix Product (CT, RG, OM), pp. 107–122.
- SIGMOD-2015-DugganPBS #array #database #optimisation
- Skew-Aware Join Optimization for Array Databases (JD, OP, LB, MS), pp. 123–135.
- SIGMOD-2015-HuangBTRTR #machine learning #scalability
- Resource Elasticity for Large-Scale Machine Learning (BH, MB, YT, BR, ST, FRR), pp. 137–152.
- SIGMOD-2015-OktayMKK #hybrid #named #performance #pipes and filters
- SEMROD: Secure and Efficient MapReduce Over HybriD Clouds (KYO, SM, VK, MK), pp. 153–166.
- SIGMOD-2015-ChenHX #authentication #integration #online
- Authenticated Online Data Integration Services (QC, HH, JX), pp. 167–181.
- SIGMOD-2015-HangKD #data access #named #query
- ENKI: Access Control for Encrypted Query Processing (IH, FK, ED), pp. 183–196.
- SIGMOD-2015-MoffittSAM #collaboration #data access
- Collaborative Access Control in WebdamLog (VZM, JS, SA, GM), pp. 197–211.
- SIGMOD-2015-UpadhyayaBS #automation #policy
- Automatic Enforcement of Data Use Policies with DataLawyer (PU, MB, DS), pp. 213–225.
- SIGMOD-2015-HuangCZJX #named #realtime #recommendation
- TencentRec: Real-time Stream Recommendation in Practice (YH, BC, WZ, JJ, YX), pp. 227–238.
- SIGMOD-2015-KulkarniBFKKMPR #scalability #twitter
- Twitter Heron: Stream Processing at Scale (SK, NB, MF, VK, CK, SM, JMP, KR, ST), pp. 239–250.
- SIGMOD-2015-BraunEGKKWAILL #database #performance #realtime
- Analytics in Motion: High Performance Event-Processing AND Real-Time Analytics in the Same Database (LB, TE, GG, MK, DK, DW, AA, AI, EL, NL), pp. 251–264.
- SIGMOD-2015-CSKZYRPAKDRD #big data #industrial #what #why
- Why Big Data Industrial Systems Need Rules and What We Can Do About It (PSGC, CS, KGK, HZ, FY, NR, SP, EA, GK, RD, VR, AD), pp. 265–276.
- SIGMOD-2015-IdreosPC #data analysis #overview
- Overview of Data Exploration Techniques (SI, OP, SC), pp. 277–281.
- SIGMOD-2015-ReABCJKR #database #machine learning #question
- Machine Learning and Databases: The Sound of Things to Come or a Cacophony of Hype? (CR, DA, MB, MIC, MIJ, TK, RR), pp. 283–284.
- SIGMOD-2015-SalamaBKZ #cost analysis #fault tolerance #parallel
- Cost-based Fault-tolerance for Parallel Data Processing (AS, CB, TK, EZ), pp. 285–297.
- SIGMOD-2015-ElmoreATPAA #configuration management #database #fine-grained #in memory #memory management #named
- Squall: Fine-Grained Live Reconfiguration for Partitioned Main Memory Databases (AJE, VA, RT, AP, DA, AEA), pp. 299–313.
- SIGMOD-2015-MishimaF #database #middleware #migration #named
- Madeus: Database Live Migration Middleware under Heavy Workloads for Cloud Environment (TM, YF), pp. 315–329.
- SIGMOD-2015-AlvaroRH #fault #injection
- Lineage-driven Fault Injection (PA, JR, JMH), pp. 331–346.
- SIGMOD-2015-ChenC
- Diversity-Aware Top-k Publish/Subscribe for Text Stream (LC, GC), pp. 347–362.
- SIGMOD-2015-FakasCM #keyword #summary
- Diverse and Proportional Size-l Object Summaries for Keyword Search (GJF, ZC, NM), pp. 363–375.
- SIGMOD-2015-YangWWW #approximate #performance #query #string
- Local Filtering: Improving the Performance of Approximate Queries on String Collections (XY, YW, BW, WW), pp. 377–392.
- SIGMOD-2015-JiangFW #keyword #network #scalability
- Exact Top-k Nearest Keyword Search in Large Networks (MJ, AWCF, RCWW), pp. 393–404.
- SIGMOD-2015-GuoCC #algorithm #keyword #performance #query
- Efficient Algorithms for Answering the m-Closest Keywords Query (TG, XC, GC), pp. 405–418.
- SIGMOD-2015-HuangFL #graph
- Minimum Spanning Trees in Temporal Graphs (SH, AWCF, RL), pp. 419–430.
- SIGMOD-2015-BerlowitzCK #performance
- Efficient Enumeration of Maximal k-Plexes (DB, SC, BK), pp. 431–444.
- SIGMOD-2015-ZhangYQS #performance
- Divide & Conquer: I/O Efficient Depth-First Search (ZZ, JXY, LQ, ZS), pp. 445–458.
- SIGMOD-2015-ChangLQYZ #algorithm #component
- Index-based Optimal Algorithms for Computing Steiner Components with Maximum Connectivity (LC, XL, LQ, JXY, WZ), pp. 459–474.
- SIGMOD-2015-GurukarRR #approach #commit #communication #mining #named #network #scalability
- COMMIT: A Scalable Approach to Mining Communication Motifs from Dynamic Networks (SG, SR, BR), pp. 475–489.
- SIGMOD-2015-BeedkarG #mining #named #scalability #sequence
- LASH: Large-Scale Sequence Mining with Hierarchies (KB, RG), pp. 491–503.
- SIGMOD-2015-CochezM #approximate #clustering #distance #linear
- Twister Tries: Approximate Hierarchical Agglomerative Clustering for Average Distance in Linear Time (MC, HM), pp. 505–517.
- SIGMOD-2015-GanT #approximate
- DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approximation (JG, YT), pp. 519–530.
- SIGMOD-2015-NaziDD #overview #web
- The TagAdvisor: Luring the Lurkers to Review Web Items (AN, MD, GD), pp. 531–543.
- SIGMOD-2015-PengD #array #database #nondeterminism
- Supporting Data Uncertainty in Array Databases (LP, YD), pp. 545–560.
- SIGMOD-2015-RazniewskiKNS #database #identification #query
- Identifying the Extent of Completeness of Query Answers over Partially Complete Databases (SR, FK, WN, DS), pp. 561–576.
- SIGMOD-2015-PengW #probability #query
- k-Hit Query: Top-k Query with Probabilistic Utility Function (PP, RCWW), pp. 577–592.
- SIGMOD-2015-LiLHT #profiling
- Linking Temporal Records for Profiling Entities (FL, MLL, WH, WCT), pp. 593–605.
- SIGMOD-2015-HuangZYDLND0Z #big data #predict
- Telco Churn Prediction with Big Data (YH, FZ, MY, KD, YL, BN, WD, QY, JZ), pp. 607–618.
- SIGMOD-2015-ErlingALCGPPB #benchmark #interactive #metric #network #social
- The LDBC Social Network Benchmark: Interactive Workload (OE, AA, JLLP, HC, AG, APP, MDP, PAB), pp. 619–630.
- SIGMOD-2015-NothaftMDZLYKAH #data-driven #scalability #using
- Rethinking Data-Intensive Science Using Scalable Analytics Systems (FAN, MM, TD, ZZ, UL, CY, JK, AA, JH, ML, MJF, ADJ, DAP), pp. 631–646.
- SIGMOD-2015-WangXLCH #grid #migration #smarttech
- QMapper for Smart Grid: Migrating SQL-based Application to Hive (YW, YX, YL, JC, SH), pp. 647–658.
- SIGMOD-2015-Widom
- Three Favorite Results (JW), p. 659.
- SIGMOD-2015-Haas #data-driven #integration
- The Power Behind the Throne: Information Integration in the Age of Data-Driven Discovery (LMH), p. 661.
- SIGMOD-2015-LoesingPEK #database #design #distributed #on the #scalability
- On the Design and Scalability of Distributed Shared-Data Databases (SL, MP, TE, DK), pp. 663–676.
- SIGMOD-2015-0001MK #concurrent #database #in memory #multi #performance
- Fast Serializable Multi-Version Concurrency Control for Main-Memory Database Systems (TN, TM, AK), pp. 677–689.
- SIGMOD-2015-Kimura #named
- FOEDUS: OLTP Engine for a Thousand Cores and NVRAM (HK), pp. 691–706.
- SIGMOD-2015-ArulrajPD #database #memory management
- Let’s Talk About Storage & Recovery Methods for Non-Volatile Memory Database Systems (JA, AP, SD), pp. 707–722.
- SIGMOD-2015-ZhangCPSX #graph #statistics #using
- Private Release of Graph Statistics using Ladder Functions (JZ, GC, CMP, DS, XX), pp. 731–745.
- SIGMOD-2015-YangSN #correlation #difference #privacy
- Bayesian Differential Privacy on Correlated Data (BY, IS, HN), pp. 747–762.
- SIGMOD-2015-MavroforakisCOK #composition #encryption #revisited
- Modular Order-Preserving Encryption, Revisited (CM, NC, AO, GK, RC), pp. 763–777.
- SIGMOD-2015-AllardHMP #clustering #named #privacy
- Chiaroscuro: Transparency and Privacy for Massive Personal Time-Series Clustering (TA, GH, FM, EP), pp. 779–794.
- SIGMOD-2015-WeiLYDW #persistent #sketching
- Persistent Data Sketching (ZW, GL, KY, XD, JRW), pp. 795–810.
- SIGMOD-2015-LinOWY #distributed #scalability
- Scalable Distributed Stream Join Processing (QL, BCO, ZW, CY), pp. 811–825.
- SIGMOD-2015-SongZWY #constraints #named
- SCREEN: Stream Data Cleaning under Speed Constraints (SS, AZ, JW, PSY), pp. 827–841.
- SIGMOD-2015-GuoZLTB #query
- Location-Aware Pub/Sub System: When Continuous Moving Queries Meet Dynamic Event Streams (LG, DZ, GL, KLT, ZB), pp. 843–857.
- SIGMOD-2015-KatsipoulakisTG #data type #named
- CE-Storm: Confidential Elastic Processing of Data Streams (NRK, CT, EAG, AL, AJL, PKC), pp. 859–864.
- SIGMOD-2015-DietrichG #database #debugging #sql
- A SQL Debugger Built from Spare Parts: Turning a SQL: 1999 Database System into Its Own Debugger (BD, TG), pp. 865–870.
- SIGMOD-2015-BaoZJL #interactive #keyword
- Exploratory Keyword Search with Interactive Input (ZB, YZ, HVJ, TWL), pp. 871–876.
- SIGMOD-2015-ScheibliDB #3d #distributed #interactive #named #query #visualisation
- QE3D: Interactive Visualization and Exploration of Complex, Distributed Query Plans (DS, CD, AB), pp. 877–881.
- SIGMOD-2015-MorcosAIOPS #data transformation #interactive #named
- DataXFormer: An Interactive Data Transformation Tool (JM, ZA, IFI, MO, PP, MS), pp. 883–888.
- SIGMOD-2015-JiZJNHF #data type #execution #quality #query
- Quality-Driven Continuous Query Execution over Out-of-Order Data Streams (YJ, HZ, ZJ, AN, GH, CF), pp. 889–894.
- SIGMOD-2015-MytilinisGKDTTG #distributed #framework #named #network #platform #social
- MoDisSENSE: A Distributed Spatio-Temporal and Textual Processing Platform for Social Networking Services (IM, IG, IK, KD, DT, MT, LG, NK), pp. 895–900.
- SIGMOD-2015-HuLWTGY #automation #documentation #named #social #social media #using
- DocRicher: An Automatic Annotation System for Text Documents Using Social Media (QH, QL, XW, AKHT, SG, JY), pp. 901–906.
- SIGMOD-2015-YuanWYC #big data #database #scalability
- A Demonstration of Rubato DB: A Highly Scalable NewSQL Database System for OLTP and Big Data Applications (LYY, LW, JHY, YC), pp. 907–912.
- SIGMOD-2015-ZengADAS #analysis #big data #interactive #named #online
- G-OLA: Generalized On-Line Aggregation for Interactive Analysis on Big Data (KZ, SA, AD, MA, IS), pp. 913–918.
- SIGMOD-2015-SakuraiMF #mining
- Mining and Forecasting of Big Time-series Data (YS, YM, CF), pp. 919–922.
- SIGMOD-2015-WangZZLC #effectiveness #nearest neighbour
- Optimal Spatial Dominance: An Effective Search of Nearest Neighbor Candidates (XW, YZ, WZ, XL, MAC), pp. 923–938.
- SIGMOD-2015-TauheedHA #named #scalability
- THERMAL-JOIN: A Scalable Spatial Join for Dynamic Workloads (FT, TH, AA), pp. 939–950.
- SIGMOD-2015-ChenGLJCZ #metric #nondeterminism #query
- Indexing Metric Uncertain Data for Range Queries (LC, YG, XL, CSJ, GC, BZ), pp. 951–965.
- SIGMOD-2015-WangLYXZ #approach #network #performance
- Efficient Route Planning on Public Transportation Networks: A Labelling Approach (SW, WL, YY, XX, SZ), pp. 967–982.
- SIGMOD-2015-Anagnostopoulos #crowdsourcing #performance
- The Importance of Being Expert: Efficient Max-Finding in Crowdsourcing (AA, LB, AF, IM, MR), pp. 983–998.
- SIGMOD-2015-HungTWA #validation
- Minimizing Efforts in Validating Crowd Answers (NQVH, DCT, MW, KA), pp. 999–1014.
- SIGMOD-2015-FanLOTF #adaptation #crowdsourcing #framework #named
- iCrowd: An Adaptive Crowdsourcing Framework (JF, GL, BCO, KLT, JF), pp. 1015–1030.
- SIGMOD-2015-ZhengWLCF #crowdsourcing #named
- QASCA: A Quality-Aware Task Assignment System for Crowdsourcing Applications (YZ, JW, GL, RC, JF), pp. 1031–1046.
- SIGMOD-2015-VerroiosLG #crowdsourcing #named
- tDP: An Optimal-Latency Budget Allocation Strategy for Crowdsourced MAXIMUM Operations (VV, PL, HGM), pp. 1047–1062.
- SIGMOD-2015-WongHFXL #approach #as a service #database #named #parallel #using
- Thrifty: Offering Parallel Database as a Service using the Shared-Process Approach (PW, ZH, ZF, WX, EL), pp. 1063–1068.
- SIGMOD-2015-AkenDPCC #named
- BenchPress: Dynamic Workload Control in the OLTP-Bench Testbed (DVA, DED, AP, CC, PCM), pp. 1069–1073.
- SIGMOD-2015-MeglerM
- Demonstrating “Data Near Here”: Scientific Data Search (VMM, DM), pp. 1075–1080.
- SIGMOD-2015-ChevalierSGL #incremental #named #performance
- Slider: An Efficient Incremental Reasoner (JC, JS, CG, FL), pp. 1081–1086.
- SIGMOD-2015-VulimiriCGJKPV #data-driven #named
- WANalytics: Geo-Distributed Analytics for a Data Intensive World (AV, CC, PBG, TJ, KK, JP, GV), pp. 1087–1092.
- SIGMOD-2015-WuTNX0 #named
- FTT: A System for Finding and Tracking Tourists in Public Transport Services (HW, JAT, WSN, MX, WC), pp. 1093–1098.
- SIGMOD-2015-WangZZS #in memory #named
- SharkDB: An In-Memory Storage System for Massive Trajectory Data (HW, KZ, XZ, SWS), pp. 1099–1104.
- SIGMOD-2015-PerezSBPRSL #graph #interactive #named
- Ringo: Interactive Graph Analytics on Big-Memory Machines (YP, RS, AB, RP, MR, PS, JL), pp. 1105–1110.
- SIGMOD-2015-ChristensenWLYT #named #online #reasoning #scalability
- STORM: Spatio-Temporal Online Reasoning and Management of Large Spatio-Temporal Data (RC, LW, FL, KY, JT, NV), pp. 1111–1116.
- SIGMOD-2015-Camacho-Rodriguez #named #parallel #xml
- PAXQuery: Parallel Analytical XML Processing (JCR, DC, IM, JAMN), pp. 1117–1122.
- SIGMOD-2015-0002SLLF #sorting
- Cache-Efficient Aggregation: Hashing Is Sorting (IM, PS, AL, WL, FF), pp. 1123–1136.
- SIGMOD-2015-LiHDL #multi #performance #similarity
- Efficient Similarity Join and Search on Multi-Attribute Data (GL, JH, DD, JL), pp. 1137–1151.
- SIGMOD-2015-PetrakiIM #in memory
- Holistic Indexing in Main-memory Column-stores (EP, SI, SM), pp. 1153–1166.
- SIGMOD-2015-MozafariGY #database #design #framework #named #robust
- CliffGuard: A Principled Framework for Finding Robust Database Designs (BM, EZYG, DYY), pp. 1167–1182.
- SIGMOD-2015-JoglekarGPR #correlation #evaluation
- Exploiting Correlations for Expensive Predicate Evaluation (MJ, HGM, AGP, CR), pp. 1183–1198.
- SIGMOD-2015-BergmanMNT #query
- Query-Oriented Data Cleaning with Oracles (MB, TM, SN, WCT), pp. 1199–1214.
- SIGMOD-2015-KhayyatIJMOPQ0Y #big data #named
- BigDansing: A System for Big Data Cleansing (ZK, IFI, AJ, SM, MO, PP, JAQR, NT, SY), pp. 1215–1230.
- SIGMOD-2015-WangDM #fault
- Data X-Ray: A Diagnostic Tool for Data Errors (XW, XLD, AM), pp. 1231–1245.
- SIGMOD-2015-ChuMIOP0Y #crowdsourcing #knowledge base #named
- KATARA: A Data Cleaning System Powered by Knowledge Bases and Crowdsourcing (XC, JM, IFI, MO, PP, NT, YY), pp. 1247–1261.
- SIGMOD-2015-WangXL #adaptation #approach
- Crowd-Based Deduplication: An Adaptive Approach (SW, XX, CHL), pp. 1263–1277.
- SIGMOD-2015-NawabAAA #commit #latency #transaction
- Minimizing Commit Latency of Transactions in Geo-Replicated Data Stores (FN, VA, DA, AEA), pp. 1279–1294.
- SIGMOD-2015-BernsteinDDP #concurrent #database #optimisation
- Optimizing Optimistic Concurrency Control for Tree-Structured, Log-Structured Databases (PAB, SD, BD, MP), pp. 1295–1309.
- SIGMOD-2015-0002KBDHKFG #coordination #program analysis #protocol #transaction
- The Homeostasis Protocol: Avoiding Transaction Coordination Through Program Analysis (SR, LK, GB, BD, HH, CK, NF, JG), pp. 1311–1326.
- SIGMOD-2015-BailisFFGHS #concurrent #empirical
- Feral Concurrency Control: An Empirical Investigation of Modern Application Integrity (PB, AF, MJF, AG, JMH, IS), pp. 1327–1342.
- SIGMOD-2015-WeimerCCCCDLMMM #execution #framework #named
- REEF: Retainable Evaluator Execution Framework (MW, YC, BGC, TC, CC, CD, YL, TM, DM, SM, BM, SN, RR, SR, RS, BS, JW), pp. 1343–1355.
- SIGMOD-2015-SahaSSVMC #framework #modelling
- Apache Tez: A Unifying Framework for Modeling and Building Data Processing Applications (BS, HS, SS, GV, ACM, CC), pp. 1357–1369.
- SIGMOD-2015-ArefCGKOPVW #design #implementation
- Design and Implementation of the LogicBlox System (MA, BtC, TJG, BK, DO, EP, TLV, GW), pp. 1371–1382.
- SIGMOD-2015-ArmbrustXLHLBMK #relational #sql
- Spark SQL: Relational Data Processing in Spark (MA, RSX, CL, YH, DL, JKB, XM, TK, MJF, AG, MZ), pp. 1383–1394.
- SIGMOD-2015-SalihogluSKTW #debugging #named
- Graft: A Debugging Tool For Apache Giraph (SS, JS, VK, BQT, JW), pp. 1403–1408.
- SIGMOD-2015-XiaoBME #metadata #summary #using
- Even Metadata is Getting Big: Annotation Summarization using InsightNotes (DX, AB, TM, MYE), pp. 1409–1414.
- SIGMOD-2015-GruenheidKRS #evolution #named
- StoryPivot: Comparing and Contrasting Story Evolution (AG, DK, TR, DS), pp. 1415–1420.
- SIGMOD-2015-UlrichG #compilation #query
- The Flatter, the Better: Query Compilation Based on the Flattening Transformation (AU, TG), pp. 1421–1426.
- SIGMOD-2015-JerglerSJ #distributed #framework #named #workflow
- D2WORM: A Management Infrastructure for Distributed Data-centric Workflows (MJ, MS, HAJ), pp. 1427–1432.
- SIGMOD-2015-AmsterdamerKM #interface #mining #named #natural language
- NL2CM: A Natural Language Interface to Crowd Mining (YA, AK, TM), pp. 1433–1438.
- SIGMOD-2015-DudoladovXSKETM
- Optimistic Recovery for Iterative Dataflows in Action (SD, CX, SS, AK, SE, KT, VM), pp. 1439–1443.
- SIGMOD-2015-LallaliAPP
- A Secure Search Engine for the Personal Cloud (SL, NA, ISP, PP), pp. 1445–1450.
- SIGMOD-2015-DokaPTMK #big data #data analysis #multi #named #workflow
- IReS: Intelligent, Multi-Engine Resource Scheduler for Big Data Analytics Workflows (KD, NP, DT, CM, NK), pp. 1451–1456.
- SIGMOD-2015-RablDFSJ #big data
- Just can’t get enough: Synthesizing Big Data (TR, MD, MF, SS, HAJ), pp. 1457–1462.
- SIGMOD-2015-BarthelsLAK #in memory #using
- Rack-Scale In-Memory Join Processing using RDMA (CB, SL, GA, DK), pp. 1463–1475.
- SIGMOD-2015-HeimelKM #estimation #kernel #modelling #multi #self
- Self-Tuning, GPU-Accelerated Kernel Density Models for Multidimensional Selectivity Estimation (MH, MK, VM), pp. 1477–1492.
- SIGMOD-2015-PolychroniouRR #database #in memory
- Rethinking SIMD Vectorization for In-Memory Databases (OP, AR, KAR), pp. 1493–1508.
- SIGMOD-2015-LiCP #encoding
- A Padded Encoding Scheme to Accelerate Scans by Leveraging Skew (YL, CC, JMP), pp. 1509–1524.
- SIGMOD-2015-LiBCGM #named #network #towards
- GetReal: Towards Realistic Selection of Influence Maximization Strategies in Competitive Networks (HL, SSB, JC, YG, JM), pp. 1525–1537.
- SIGMOD-2015-TangSX #approach
- Influence Maximization in Near-Linear Time: A Martingale Approach (YT, YS, XX), pp. 1539–1554.
- SIGMOD-2015-HuYCX #community
- Community Level Diffusion Extraction (ZH, JY, BC, EPX), pp. 1555–1569.
- SIGMOD-2015-ShinJSK #approach #graph #named #random #scalability
- BEAR: Block Elimination Approach for Random Walk with Restart on Large Graphs (KS, JJ, LS, UK), pp. 1571–1585.
- SIGMOD-2015-RuchanskyBGGK #problem
- The Minimum Wiener Connector Problem (NR, FB, DGS, FG, NK), pp. 1587–1602.
- SIGMOD-2015-RoyLL #recommendation
- From Group Recommendations to Group Formation (SBR, LVSL, RL), pp. 1603–1616.
- SIGMOD-2015-ArmenatzoglouPN #approach #clustering #game studies #graph #multi #realtime #social
- Real-Time Multi-Criteria Social Graph Partitioning: A Game Theoretic Approach (NA, HP, VN, DP, CS), pp. 1617–1628.
- SIGMOD-2015-SheT0 #social
- Utility-Aware Social Event-Participant Planning (JS, YT, LC), pp. 1629–1643.
- SIGMOD-2015-ZhouCZCHW #community #online #recommendation #video
- Online Video Recommendation in Sharing Community (XZ, LC, YZ, LC, GH, CW), pp. 1645–1656.
- SIGMOD-2015-PrasadFGMLXHR #data transfer #distributed #performance #predict #scalability
- Large-scale Predictive Analytics in Vertica: Fast Data Transfer, Distributed Model Creation, and In-database Prediction (SP, AF, VG, JM, JL, VX, MH, IR), pp. 1657–1668.
- SIGMOD-2015-TranMP
- Oracle Workload Intelligence (QTT, KM, NP), pp. 1669–1681.
- SIGMOD-2015-ColgroveDHMSSTV #component #enterprise #named #performance
- Purity: Building Fast, Highly-Available Enterprise Flash Storage from Commodity Components (JC, JDD, JH, ELM, CS, RS, AT, NV, FW), pp. 1683–1694.
- SIGMOD-2015-TerleckiXSKW #on the
- On Improving User Response Times in Tableau (PT, FX, MS, VK, RMGW), pp. 1695–1706.
- SIGMOD-2015-Viglas #data transformation #memory management
- Data Management in Non-Volatile Memory (SDV), pp. 1707–1711.
- SIGMOD-2015-ChuHCG #named
- TEGRA: Table Extraction by Global Record Alignment (XC, YH, KC, KG), pp. 1713–1728.
- SIGMOD-2015-LiuSWRH #corpus #mining #quality
- Mining Quality Phrases from Massive Text Corpora (JL, JS, CW, XR, JH), pp. 1729–1744.
- SIGMOD-2015-TrummerHLSG #mining #web
- Mining Subjective Properties on the Web (IT, AYH, HL, SS, RG), pp. 1745–1760.
- SIGMOD-2015-HuaZZ #microblog #social
- Microblog Entity Linking with Social Temporal Context (WH, KZ, XZ), pp. 1761–1775.
- SIGMOD-2015-PapailiouTKK #adaptation #query
- Graph-Aware, Workload-Adaptive SPARQL Query Caching (NP, DT, PK, NK), pp. 1777–1792.
- SIGMOD-2015-Atre #query
- Left Bit Right: For SPARQL Join Queries with OPTIONAL Patterns (Left-outer-joins) (MA), pp. 1793–1808.
- SIGMOD-2015-ZhengZLYSZ #approach #graph #how #nondeterminism #rdf #similarity
- How to Build Templates for RDF Question/Answering: An Uncertain Graph Similarity Join Approach (WZ, LZ, XL, JXY, SS, DZ), pp. 1809–1824.
- SIGMOD-2015-QiaoO #benchmark #metric #named #rdf
- RBench: Application-Specific RDF Benchmarking (SQ, ZMÖ), pp. 1825–1838.
- SIGMOD-2015-El-RobyA #automation #linked data #named #open data
- ALEX: Automatic Link Exploration in Linked Data (AER, AA), pp. 1839–1853.
- SIGMOD-2015-PaparrizosG #clustering #named #performance
- k-Shape: Efficient and Accurate Clustering of Time Series (JP, LG), pp. 1855–1870.
- SIGMOD-2015-ZhouT #named #predict
- SMiLer: A Semi-Lazy Time Series Prediction System for Sensors (JZ, AKHT), pp. 1871–1886.
- SIGMOD-2015-SunFSKHX #graph #named #performance
- SQLGraph: An Efficient Relational-Based Property Graph Store (WS, AF, KS, AK, GH, GTX), pp. 1887–1901.
- SIGMOD-2015-YuanMYG #algorithm #graph
- Updating Graph Indices with a One-Pass Algorithm (DY, PM, HY, CLG), pp. 1903–1916.
- SIGMOD-2015-GuptaATKPSS
- Amazon Redshift and the Case for Simpler Data Warehouses (AG, DA, DT, JK, RP, SS, VS), pp. 1917–1923.
- SIGMOD-2015-DeshpandeRDA #approach #named
- ShareInsights: An Unified Approach to Full-stack Data Processing (MD, DR, SD, AA), pp. 1925–1940.
- SIGMOD-2015-TrummerK #algorithm #incremental #multi #optimisation #query
- An Incremental Anytime Algorithm for Multi-Objective Query Optimization (IT, CK), pp. 1941–1953.
- SIGMOD-2015-MeneghettiMCC #evaluation #query
- Output-sensitive Evaluation of Prioritized Skyline Queries (NM, DM, PC, JC), pp. 1955–1967.
- SIGMOD-2015-KumarNP #learning #linear #modelling #normalisation
- Learning Generalized Linear Models Over Normalized Data (AK, JFN, JMP), pp. 1969–1984.
- SIGMOD-2015-KatsisOPZ #incremental #maintenance
- Utilizing IDs to Accelerate Incremental View Maintenance (YK, KWO, YP, KKZ), pp. 1985–2000.
- SIGMOD-2015-PsallidasDCC #named #query
- S4: Top-k Spreadsheet-Style Search for Query Discovery (FP, BD, KC, SC), pp. 2001–2016.
- SIGMOD-2015-IbrahimDE #database #relational
- Proactive Annotation Management in Relational Databases (KI, XD, MYE), pp. 2017–2030.
- SIGMOD-2015-KouUMG
- Weighted Coverage based Reviewer Assignment (NMK, LHU, NM, ZG), pp. 2031–2046.
- SIGMOD-2015-TangLT #distributed #online
- Distributed Online Tracking (MT, FL, YT), pp. 2047–2061.
- SIGMOD-2015-DongS #challenge #modelling
- Knowledge Curation and Knowledge Fusion: Challenges, Models and Applications (XLD, DS), pp. 2063–2066.
- SIGMOD-2015-YangM #migration
- Smooth Task Migration in Apache Storm (MY, RTBM), pp. 2067–2068.
- SIGMOD-2015-BabarinsaI #database #named
- JAFAR: Near-Data Processing for Databases (OOB, SI), pp. 2069–2070.
- SIGMOD-2015-ClinkenbeardN #communication #scheduling
- Job Scheduling with Minimizing Data Communication Costs (TC, AN), pp. 2071–2072.
- SIGMOD-2015-PantelaI
- One Loop Does Not Fit All (SP, SI), pp. 2073–2074.
- SIGMOD-2015-PerelmanR #compilation #named #query #worst-case
- DunceCap: Compiling Worst-Case Optimal Query Plans (AP, CR), pp. 2075–2076.
- SIGMOD-2015-TuR #named #query #using
- DunceCap: Query Plans Using Generalized Hypertree Decompositions (ST, CR), pp. 2077–2078.
55 ×#named
20 ×#database
19 ×#query
18 ×#performance
15 ×#scalability
10 ×#distributed
9 ×#approach
8 ×#big data
8 ×#graph
8 ×#using
20 ×#database
19 ×#query
18 ×#performance
15 ×#scalability
10 ×#distributed
9 ×#approach
8 ×#big data
8 ×#graph
8 ×#using