BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Canada
1 × France
1 × Italy
1 × Slovenia
9 × USA
Collaborated with:
H.Mamitsuka A.Nakamura B.Zadrozny A.C.Lozano H.Li Y.Liu J.Langford P.M.Long A.Arnold E.P.D.Pednault S.Rosset N.K.Verma C.Apté R.Schroko H.Li A.Niculescu-Mizil C.Perlich J.R.M.Hosking P.Melville C.Pendus C.K.Reddy D.L.Jensen V.P.Thomas J.J.Bennett G.F.Anderson B.R.Cooley M.Kowalczyk M.Domick T.Gardinier
Talks about:
learn (11) use (6) model (5) reinforc (4) method (4) tempor (3) sensit (3) causal (3) optim (3) cost (3)

Person: Naoki Abe

DBLP DBLP: Abe:Naoki

Contributed to:

KDD 20102010
KDD 20092009
KDD 20082008
KDD 20072007
KDD 20062006
KDD 20042004
KDD 20022002
ICML 20002000
ICML 19991999
ICML 19981998
ICML 19961996
ICML 19951995
ICML 19941994

Wrote 17 papers:

KDD-2010-AbeMPRJTBACKDG #learning #optimisation #using
Optimizing debt collections using constrained reinforcement learning (NA, PM, CP, CKR, DLJ, VPT, JJB, GFA, BRC, MK, MD, TG), pp. 75–84.
KDD-2009-LozanoALR #modelling #visual notation
Grouped graphical Granger modeling methods for temporal causal modeling (ACL, NA, YL, SR), pp. 577–586.
KDD-2009-LozanoLNLPHA #modelling
Spatial-temporal causal modeling for climate change attribution (ACL, HL, ANM, YL, CP, JRMH, NA), pp. 587–596.
KDD-2008-LozanoA #multi
Multi-class cost-sensitive boosting with p-norm loss functions (ACL, NA), pp. 506–514.
KDD-2007-ArnoldLA #modelling #visual notation
Temporal causal modeling with graphical granger methods (AA, YL, NA), pp. 66–75.
KDD-2006-AbeZL #detection #learning
Outlier detection by active learning (NA, BZ, JL), pp. 504–509.
KDD-2004-AbeVAS #learning
Cross channel optimized marketing by reinforcement learning (NA, NKV, CA, RS), pp. 767–772.
KDD-2004-AbeZL #learning #multi
An iterative method for multi-class cost-sensitive learning (NA, BZ, JL), pp. 3–11.
KDD-2002-PednaultAZ #learning
Sequential cost-sensitive decision making with reinforcement learning (EPDP, NA, BZ), pp. 259–268.
ICML-2000-MamitsukaA #database #learning #mining #performance #query #scalability
Efficient Mining from Large Databases by Query Learning (HM, NA), pp. 575–582.
ICML-1999-AbeL #concept #learning #linear #probability #using
Associative Reinforcement Learning using Linear Probabilistic Concepts (NA, PML), pp. 3–11.
ICML-1999-AbeN #internet #learning
Learning to Optimally Schedule Internet Banner Advertisements (NA, AN), pp. 12–21.
ICML-1998-AbeM #learning #query #using
Query Learning Strategies Using Boosting and Bagging (NA, HM), pp. 1–9.
ICML-1998-NakamuraA #algorithm #collaboration #predict #using
Collaborative Filtering Using Weighted Majority Prediction Algorithms (AN, NA), pp. 395–403.
ICML-1996-AbeL #learning #modelling #using #word
Learning Word Association Norms Using Tree Cut Pair Models (NA, HL), pp. 3–11.
ICML-1995-AbeLN #2d #algorithm #learning #online #using
On-line Learning of Binary Lexical Relations Using Two-dimensional Weighted Majority Algorithms (NA, HL, AN), pp. 3–11.
ICML-1994-AbeM #predict #probability
A New Method for Predicting Protein Secondary Structures Based on Stochastic Tree Grammars (NA, HM), pp. 3–11.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.