Proceedings of the 12th International Conference on Knowledge Discovery and Data Mining
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter

Tina Eliassi-Rad, Lyle H. Ungar, Mark Craven, Dimitrios Gunopulos
Proceedings of the 12th International Conference on Knowledge Discovery and Data Mining
KDD, 2006.

KER
DBLP
Scholar
Full names Links ISxN
@proceedings{KDD-2006,
	address       = "Philadelphia, Pennsylvania, USA",
	editor        = "Tina Eliassi-Rad and Lyle H. Ungar and Mark Craven and Dimitrios Gunopulos",
	isbn          = "1-59593-339-5",
	publisher     = "{ACM}",
	title         = "{Proceedings of the 12th International Conference on Knowledge Discovery and Data Mining}",
	year          = 2006,
}

Contents (126 items)

KDD-2006-Stankovic #network #self
Self-Organizing wireless sensor networks in action (JAS), p. 1.
KDD-2006-Moore #algorithm #statistics
New cached-sufficient statistics algorithms for quickly answering statistical questions (AM), p. 2.
KDD-2006-Agrawal
Next frontier (RA), p. 3.
KDD-2006-AchtertBKKZ #clustering #correlation #modelling
Deriving quantitative models for correlation clusters (EA, CB, HPK, PK, AZ), pp. 4–13.
KDD-2006-AgarwalCA #learning #rank
Learning to rank networked entities (AA, SC, SA), pp. 14–23.
KDD-2006-AgarwalMPVZ #approximate #performance #statistics
Spatial scan statistics: approximations and performance study (DA, AM, JMP, SV, ZZ), pp. 24–33.
KDD-2006-AnagnostopoulosVHKY #segmentation
Global distance-based segmentation of trajectories (AA, MV, MH, EJK, PSY), pp. 34–43.
KDD-2006-BackstromHKL #evolution #network #scalability #social
Group formation in large social networks: membership, growth, and evolution (LB, DPH, JMK, XL), pp. 44–54.
KDD-2006-BarbaraDR #detection #statistics #testing #using
Detecting outliers using transduction and statistical testing (DB, CD, JPR), pp. 55–64.
KDD-2006-BohmFPP #clustering #robust
Robust information-theoretic clustering (CB, CF, JYP, CP), pp. 65–75.
KDD-2006-BrickellS #performance
Efficient anonymity-preserving data collection (JB, VS), pp. 76–85.
KDD-2006-BuehrerPG #mining
Out-of-core frequent pattern mining on a commodity PC (GB, SP, AG), pp. 86–95.
KDD-2006-CaldersGJ #mining #set
Mining rank-correlated sets of numerical attributes (TC, BG, SJ), pp. 96–105.
KDD-2006-ChenHLN #interactive #named #network
NeMoFinder: dissecting genome-wide protein-protein interactions with meso-scale network motifs (JC, WH, MLL, SKN), pp. 106–115.
KDD-2006-DavisD #community #rank #web
Estimating the global pagerank of web communities (JVD, ISD), pp. 116–125.
KDD-2006-DingLPP #clustering #matrix #orthogonal
Orthogonal nonnegative matrix t-factorizations for clustering (CHQD, TL, WP, HP), pp. 126–135.
KDD-2006-FanMY #framework #performance #random #summary
A general framework for accurate and fast regression by data summarization in random decision trees (WF, JM, PSY), pp. 136–146.
KDD-2006-FanD #bias #classification #framework #performance #testing
Reverse testing: an efficient framework to select amongst classifiers under sample selection bias (WF, ID), pp. 147–156.
KDD-2006-Forman #classification #fault #roadmap
Quantifying trends accurately despite classifier error and class imbalance (GF), pp. 157–166.
KDD-2006-GionisMMT #data mining #mining
Assessing data mining results via swap randomization (AG, HM, TM, PT), pp. 167–176.
KDD-2006-HashimotoAUKM #mining #order #performance #probability
A new efficient probabilistic model for mining labeled ordered trees (KH, KFAK, NU, MK, HM), pp. 177–186.
KDD-2006-HoiLC #classification #kernel #learning
Learning the unified kernel machines for classification (SCHH, MRL, EYC), pp. 187–196.
KDD-2006-HorvathRW #graph #mining
Frequent subgraph mining in outerplanar graphs (TH, JR, SW), pp. 197–206.
KDD-2006-IhlerHS #adaptation #detection #process
Adaptive event detection with time-varying poisson processes (ATI, JH, PS), pp. 207–216.
KDD-2006-Joachims #linear
Training linear SVMs in linear time (TJ), pp. 217–226.
KDD-2006-KeCN #approach #correlation #mining #using
Mining quantitative correlated patterns using an information-theoretic approach (YK, JC, WN), pp. 227–236.
KDD-2006-KnobbeH #performance
Maximally informative k-itemsets and their efficient discovery (AJK, EKYH), pp. 237–244.
KDD-2006-KorenNV #network #proximity
Measuring and extracting proximity in networks (YK, SCN, CV), pp. 245–255.
KDD-2006-KumarPT #segmentation #topic
Hierarchical topic segmentation of websites (RK, KP, AT), pp. 257–266.
KDD-2006-LateckiSL
New EM derived from Kullback-Leibler divergence (LJL, MS, RL), pp. 267–276.
KDD-2006-LeFevreDR
Workload-aware anonymization (KL, DJD, RR), pp. 277–286.
KDD-2006-LiHC #random
Very sparse random projections (PL, TH, KWC), pp. 287–296.
KDD-2006-LiuZBX #analysis #using
Rule interestingness analysis using OLAP operations (BL, KZ, JB, WX), pp. 297–306.
KDD-2006-LoekitoB #diagrams #mining #performance #using
Fast mining of high dimensional expressive contrast patterns using zero-suppressed binary decision diagrams (EL, JB), pp. 307–316.
KDD-2006-LongWZY #graph #learning
Unsupervised learning on k-partite graphs (BL, XW, Z(Z, PSY), pp. 317–326.
KDD-2006-MahoneyMD
Tensor-CUR decompositions for tensor-based data (MWM, MM, PD), pp. 327–336.
KDD-2006-MeiXCHZ #analysis #generative #semantics
Generating semantic annotations for frequent patterns with context analysis (QM, DX, HC, JH, CZ), pp. 337–346.
KDD-2006-MielikainenTT
Aggregating time partitions (TM, ET, PT), pp. 347–356.
KDD-2006-RattiganMJ #approximate #network #performance #using
Using structure indices for efficient approximation of network properties (MJR, MEM, DJ), pp. 357–366.
KDD-2006-RosalesF #learning #linear #metric #programming
Learning sparse metrics via linear programming (RR, GF), pp. 367–373.
KDD-2006-SunTF #analysis #graph
Beyond streams and graphs: dynamic tensor analysis (JS, DT, CF), pp. 374–383.
KDD-2006-TangZL #classification #data-driven #semantics #taxonomy
Acclimatizing taxonomic semantics for hierarchical content classification from semantics to data-driven taxonomy (LT, JZ, HL), pp. 384–393.
KDD-2006-TaoXZ #database #metric #mining #scalability
Mining distance-based outliers from large databases in any metric space (YT, XX, SZ), pp. 394–403.
KDD-2006-TongF #performance #problem
Center-piece subgraphs: problem definition and fast solutions (HT, CF), pp. 404–413.
KDD-2006-WangF
Anonymizing sequential releases (KW, BCMF), pp. 414–423.
KDD-2006-WangM #roadmap #topic
Topics over time: a non-Markov continuous-time model of topical trends (XW, AM), pp. 424–433.
KDD-2006-Webb
Discovering significant rules (GIW), pp. 434–443.
KDD-2006-XinCYH
Extracting redundancy-aware top-k patterns (DX, HC, XY, JH), pp. 444–453.
KDD-2006-YeW #analysis
Regularized discriminant analysis for high dimensional, low sample size data (JY, TW), pp. 454–463.
KDD-2006-YuYTKW #analysis #component #probability
Supervised probabilistic principal component analysis (SY, KY, VT, HPK, MW), pp. 464–473.
KDD-2006-ZhangL #classification #string
Extracting key-substring-group features for text classification (DZ, WSL), pp. 474–483.
KDD-2006-ZhaoLBM #detection #evolution
Event detection from evolution of click-through data (QZ, TYL, SSB, WYM), pp. 484–493.
KDD-2006-ZhuNWZM #detection #web
Simultaneous record detection and attribute labeling in web data extraction (JZ, ZN, JRW, BZ, WYM), pp. 494–503.
KDD-2006-AbeZL #detection #learning
Outlier detection by active learning (NA, BZ, JL), pp. 504–509.
KDD-2006-AggarwalPZ #data mining #mining #on the #privacy
On privacy preservation against adversarial data mining (CCA, JP, BZ), pp. 510–516.
KDD-2006-ArunasalamC #classification #named #top-down
CCCS: a top-down associative classifier for imbalanced class distribution (BA, SC), pp. 517–522.
KDD-2006-Berger-WolfS #analysis #framework #network #social
A framework for analysis of dynamic social networks (TYBW, JS), pp. 523–528.
KDD-2006-BhattacharyaGL
Query-time entity resolution (IB, LG, LL), pp. 529–534.
KDD-2006-BucilaCN
Model compression (CB, RC, ANM), pp. 535–541.
KDD-2006-BurkeMWB #classification #collaboration #detection #recommendation
Classification features for attack detection in collaborative recommender systems (RDB, BM, CW, RB), pp. 542–547.
KDD-2006-CarvalhoC #feature model #learning #online #performance
Single-pass online learning: performance, voting schemes and online feature selection (VRC, WWC), pp. 548–553.
KDD-2006-ChakrabartiKT #clustering
Evolutionary clustering (DC, RK, AT), pp. 554–560.
KDD-2006-GionisMPU #algorithm #order
Algorithms for discovering bucket orders from data (AG, HM, KP, AU), pp. 561–566.
KDD-2006-GuoV #mining #multi #relational #validation
Mining relational data through correlation-based multiple view validation (HG, HLV), pp. 567–573.
KDD-2006-IwataSY #recommendation
Recommendation method for extending subscription periods (TI, KS, TY), pp. 574–579.
KDD-2006-JankSW #functional #modelling #online #realtime
Dynamic, real-time forecasting of online auctions via functional models (WJ, GS, SW), pp. 580–585.
KDD-2006-Jaroszewicz #polynomial
Polynomial association rules with applications to logistic regression (SJ), pp. 586–591.
KDD-2006-JiangG #data type #mining #named
CFI-Stream: mining closed frequent itemsets in data streams (NJ, LG), pp. 592–597.
KDD-2006-KonigB #categorisation
Reducing the human overhead in text categorization (ACK, EB), pp. 598–603.
KDD-2006-KumarRHP #algorithm
Algorithms for storytelling (DK, NR, RFH, MP), pp. 604–610.
KDD-2006-KumarNT #evolution #network #online #social
Structure and evolution of online social networks (RK, JN, AT), pp. 611–617.
KDD-2006-LaurLM #encryption
Cryptographically private support vector machines (SL, HL, TM), pp. 618–624.
KDD-2006-LauwLW #bias #statistics
Bias and controversy: beyond the statistical deviation (HWL, EPL, KW), pp. 625–630.
KDD-2006-LeskovecF #graph #scalability
Sampling from large graphs (JL, CF), pp. 631–636.
KDD-2006-LiuZWMP #clustering #difference #order #set
Clustering pair-wise dissimilarity data into partially ordered sets (JL, QZ, WW, LM, JP), pp. 637–642.
KDD-2006-ManiyarN #algorithm #data mining #mining #using #visual notation #visualisation
Visual data mining using principled projection algorithms and information visualization techniques (DMM, ITN), pp. 643–648.
KDD-2006-MeiZ #mining
A mixture model for contextual text mining (QM, CZ), pp. 649–655.
KDD-2006-MeruguRP #approach #estimation #multi
A new multi-view regression approach with an application to customer wallet estimation (SM, SR, CP), pp. 656–661.
KDD-2006-MessaoudBR #analysis #data transformation #multi #performance
Efficient multidimensional data representations based on multiple correspondence analysis (RBM, OB, SLR), pp. 662–667.
KDD-2006-Morchen #algorithm #mining
Algorithms for time series knowledge mining (FM), pp. 668–673.
KDD-2006-NathBM #approach #classification #clustering #scalability #using
Clustering based large margin classification: a scalable approach using SOCP formulation (JSN, CB, MNM), pp. 674–679.
KDD-2006-NewmanCS #modelling #statistics #topic
Statistical entity-topic models (DN, CC, PS), pp. 680–686.
KDD-2006-PalatinLSW #grid #mining
Mining for misconfigured machines in grid systems (NP, AL, AS, RW), pp. 687–692.
KDD-2006-PanGBXTF #automation #image #mining
Automatic mining of fruit fly embryo images (JYP, AGRB, EPX, AJMT, CF), pp. 693–698.
KDD-2006-ParkPMGD #recommendation #robust
Naïve filterbots for robust cold-start recommendations (STP, DP, OM, NG, DD), pp. 699–705.
KDD-2006-SpiliopoulouNTS #clustering #modelling #monitoring #named
MONIC: modeling and monitoring cluster transitions (MS, IN, YT, RS), pp. 706–711.
KDD-2006-SuchanekIW #analysis #documentation #statistics #web
Combining linguistic and statistical analysis to extract relations from web documents (FMS, GI, GW), pp. 712–717.
KDD-2006-TanSZ #mining
Mining long-term search history to improve search accuracy (BT, XS, CZ), pp. 718–723.
KDD-2006-TsangKK #feature model #kernel #performance #set
Efficient kernel feature extraction for massive data sets (IWT, AK, JTK), pp. 724–729.
KDD-2006-WangP #modelling #probability #using
Summarizing itemset patterns using probabilistic models (CW, SP), pp. 730–735.
KDD-2006-WangYPYY #concept #data type #mining
Suppressing model overfitting in mining concept-drifting data streams (HW, JY, JP, PSY, JXY), pp. 736–741.
KDD-2006-WedigM #analysis #personalisation #query #scalability
A large-scale analysis of query logs for assessing personalization opportunities (SW, OM), pp. 742–747.
KDD-2006-WeiK #classification
Semi-supervised time series classification (LW, EJK), pp. 748–753.
KDD-2006-WongLFW #privacy
(alpha, k)-anonymity: an enhanced k-anonymity model for privacy preserving data publishing (RCWW, JL, AWCF, KW), pp. 754–759.
KDD-2006-WuCCH #approximate #incremental #matrix
Incremental approximate matrix factorization for speeding up support vector machines (GW, EYC, YKC, CJH), pp. 760–766.
KDD-2006-AbeZL06a #detection
Outlier detection by sampling with accuracy guarantees (MW, CJ), pp. 767–772.
KDD-2006-XinSMH #feedback #interactive
Discovering interesting patterns through user’s interactive feedback (DX, XS, QM, JH), pp. 773–778.
KDD-2006-XiongWC #clustering #metric #perspective #validation
K-means clustering versus validation measures: a data distribution perspective (HX, JW, JC), pp. 779–784.
KDD-2006-XuWPWSF #using
Utility-based anonymization using local recoding (JX, WW, JP, XW, BS, AWCF), pp. 785–790.
KDD-2006-YooHS #clustering #graph #integration #refinement #representation #semantics
Integration of semantic-based bipartite graph representation and mutual refinement strategy for biomedical literature clustering (IY, XH, IYS), pp. 791–796.
KDD-2006-ZengWZK #clique #database #graph #scalability
Coherent closed quasi-clique discovery from large dense graph databases (ZZ, JW, LZ, GK), pp. 797–802.
KDD-2006-ZhangHL #mining
Mining progressive confident rules (MZ, WH, MLL), pp. 803–808.
KDD-2006-ZhangCFM #detection #recommendation
Attack detection in time series for recommender systems (SZ, AC, JF, FM), pp. 809–814.
KDD-2006-ZhangCWZ #clustering #concept #identification
Identifying bridging rules between conceptual clusters (SZ, FC, XW, CZ), pp. 815–820.
KDD-2006-ZhangPD #categorisation #graph #linear #modelling #predict
Linear prediction models with graph regularization for web-page categorization (TZ, AP, BD), pp. 821–826.
KDD-2006-ZhaoZR #framework #mining #named
BLOSOM: a framework for mining arbitrary boolean expressions (LZ, MJZ, NR), pp. 827–832.
KDD-2006-Jonas
Introducing perpetual analytics (JJ), p. 833.
KDD-2006-Kahn #problem #statistics
Capital One’s statistical problems: our top ten list (WK), p. 834.
KDD-2006-McCallum #data mining #information management #mining
Information extraction, data mining and joint inference (AM), p. 835.
KDD-2006-Cavaretta #challenge #data mining #mining
Data mining challenges in the automotive domain (MC), p. 836.
KDD-2006-BiPOKFSR #classification #detection #symmetry
Computer aided detection via asymmetric cascade of sparse hyperplane classifiers (JB, SP, KO, TK, GF, MS, RBR), pp. 837–844.
KDD-2006-CastanoMTGDCCD #classification #detection
Onboard classifiers for science event detection on a remote sensing spacecraft (RC, DM, NT, RG, TD, BC, SAC, AD), pp. 845–851.
KDD-2006-FormanKS #mining
Pragmatic text mining: minimizing human effort to quantify many issues in call logs (GF, EK, JS), pp. 852–861.
KDD-2006-HettichP #lessons learnt #mining
Mining for proposal reviewers: lessons learned at the national science foundation (SH, MJP), pp. 862–871.
KDD-2006-LiuCHY #analysis #dependence #detection #graph #named
GPLAG: detection of software plagiarism by program dependence graph analysis (CL, CC, JH, PSY), pp. 872–881.
KDD-2006-MorchenMU #generative #modelling #music #statistics
Understandable models Of music collections based on exhaustive feature generation with temporal statistics (FM, IM, AU), pp. 882–891.
KDD-2006-ZhaoLBX #data mining #identification #mining
Opportunity map: identifying causes of failure — a deployed data mining system (KZ, BL, JB, WX), pp. 892–901.
KDD-2006-AgichteinZ #behaviour #identification #mining #web
Identifying “best bet” web search results by mining past user behavior (EA, ZZ), pp. 902–908.
KDD-2006-CaruanaEMRSFHK #mining #predict
Mining citizen science data to predict orevalence of wild bird species (RC, MFE, AM, MR, DS, DF, WMH, SK), pp. 909–915.
KDD-2006-EtienneWZ #component #framework #information management
A component-based framework for knowledge discovery in bioinformatics (JE, BW, LZ), pp. 916–921.
KDD-2006-GaoGEJ #clustering
Discovering significant OPSM subspace clusters in massive gene expression data (BJG, OLG, ME, SJMJ), pp. 922–928.
KDD-2006-LingSBM #development #mining
Maximum profit mining and its application in software development (CXL, VSS, TFWB, NHM), pp. 929–934.
KDD-2006-MierswaWKSE #agile #data mining #mining #named #prototype
YALE: rapid prototyping for complex data mining tasks (IM, MW, RK, MS, TE), pp. 935–940.
KDD-2006-VirdhagriswaranD #detection
Camouflaged fraud detection in domains with complex relationships (SV, GD), pp. 941–947.
KDD-2006-YanB #classification #optimisation #ranking
Beyond classification and ranking: constrained optimization of the ROI (LY, PB), pp. 948–953.
KDD-2006-Piatetsky-ShapiroGDFGZ #challenge #data mining #mining #question
Is there a grand challenge or X-prize for data mining? (GPS, RG, CD, RF, LG, MJZ), pp. 954–956.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.