BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Australia
1 × Canada
1 × China
1 × Finland
1 × Germany
1 × Slovenia
2 × France
8 × USA
Collaborated with:
A.Beygelzimer B.Zadrozny S.Kakade S.Dasgupta L.Li N.Abe A.L.Strehl M.Kääriäinen A.Banerjee A.Agarwal M.Dudík R.Salakhutdinov T.Zhang J.Wortman M.Balcan L.v.Ahn N.J.Hopper M.J.Kearns M.Zinkevich M.W.Seeger N.Megiddo S.Thrun D.Fox J.O'Sullivan R.Caruana A.Blum K.Chang A.Krishnamurthy H.D.III K.Q.Weinberger A.Dasgupta A.J.Smola J.Attenberg E.Wiewiora M.L.Littman V.Dani T.P.Hayes D.Hsu S.Kale R.E.Schapire
Talks about:
learn (16) model (5) activ (4) reinforc (3) explor (3) bound (3) algorithm (2) approxim (2) summari (2) perform (2)

Person: John Langford

DBLP DBLP: Langford:John

Contributed to:

ICML 20152015
ICML c2 20142014
ICML 20112011
ICML 20092009
KDD 20092009
ICML 20082008
ICML 20062006
KDD 20062006
ICML 20052005
STOC 20052005
KDD 20042004
ICML 20032003
ICML 20022002
ICML 20012001
ICML 20002000
ICML 19991999

Wrote 27 papers:

ICML-2015-ChangKADL #education #learning
Learning to Search Better than Your Teacher (KWC, AK, AA, HDI, JL), pp. 2058–2066.
ICML-c2-2014-AgarwalHKLLS #algorithm #performance
Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits (AA, DH, SK, JL, LL, RES), pp. 1638–1646.
ICML-2011-DudikLL #evaluation #learning #policy #robust
Doubly Robust Policy Evaluation and Learning (MD, JL, LL), pp. 1097–1104.
ICML-2009-BeygelzimerDL #learning
Importance weighted active learning (AB, SD, JL), pp. 49–56.
ICML-2009-BeygelzimerLZ #machine learning #reduction #summary #tutorial
Tutorial summary: Reductions in machine learning (AB, JL, BZ), p. 12.
ICML-2009-DasguptaL #learning #summary #tutorial
Tutorial summary: Active learning (SD, JL), p. 18.
ICML-2009-LangfordSZ #learning #modelling
Learning nonlinear dynamic models (JL, RS, TZ), pp. 593–600.
ICML-2009-WeinbergerDLSA #learning #multi #scalability
Feature hashing for large scale multitask learning (KQW, AD, JL, AJS, JA), pp. 1113–1120.
KDD-2009-BeygelzimerL #learning
The offset tree for learning with partial labels (AB, JL), pp. 129–138.
ICML-2008-LangfordSW
Exploration scavenging (JL, ALS, JW), pp. 528–535.
ICML-2006-BalcanBL #learning
Agnostic active learning (MFB, AB, JL), pp. 65–72.
ICML-2006-BeygelzimerKL #nearest neighbour
Cover trees for nearest neighbor (AB, SK, JL), pp. 97–104.
ICML-2006-StrehlLWLL #learning
PAC model-free reinforcement learning (ALS, LL, EW, JL, MLL), pp. 881–888.
KDD-2006-AbeZL #detection #learning
Outlier detection by active learning (NA, BZ, JL), pp. 504–509.
ICML-2005-BeygelzimerDHLZ #classification #fault #reduction
Error limiting reductions between classification tasks (AB, VD, TPH, JL, BZ), pp. 49–56.
ICML-2005-KaariainenL #bound #comparison #fault
A comparison of tight generalization error bounds (MK, JL), pp. 409–416.
ICML-2005-LangfordZ #classification #learning #performance
Relating reinforcement learning performance to classification performance (JL, BZ), pp. 473–480.
STOC-2005-AhnHL
Covert two-party computation (LvA, NJH, JL), pp. 513–522.
KDD-2004-AbeZL #learning #multi
An iterative method for multi-class cost-sensitive learning (NA, BZ, JL), pp. 3–11.
KDD-2004-BanerjeeL #clustering #evaluation
An objective evaluation criterion for clustering (AB, JL), pp. 515–520.
ICML-2003-KakadeKL #metric
Exploration in Metric State Spaces (SK, MJK, JL), pp. 306–312.
ICML-2002-KakadeL #approximate #learning
Approximately Optimal Approximate Reinforcement Learning (SK, JL), pp. 267–274.
ICML-2002-Langford #bound #testing
Combining Trainig Set and Test Set Bounds (JL), pp. 331–338.
ICML-2002-LangfordZK #analysis #trade-off
Competitive Analysis of the Explore/Exploit Tradeoff (JL, MZ, SK), pp. 339–346.
ICML-2001-LangfordSM #bound #classification #predict
An Improved Predictive Accuracy Bound for Averaging Classifiers (JL, MWS, NM), pp. 290–297.
ICML-2000-OSullivanLCB #algorithm #named #robust
FeatureBoost: A Meta-Learning Algorithm that Improves Model Robustness (JO, JL, RC, AB), pp. 703–710.
ICML-1999-ThrunLF #learning #markov #modelling #monte carlo #parametricity #probability #process
Monte Carlo Hidden Markov Models: Learning Non-Parametric Models of Partially Observable Stochastic Processes (ST, JL, DF), pp. 415–424.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.