Travelled to:
1 × Australia
1 × France
1 × Israel
2 × China
2 × USA
Collaborated with:
Y.Abbasi-Yadkori A.Malek B.Kulis J.Baxter V.Kanade A.Rakhlin J.Abernethy X.Chen Y.Seldin K.Crammer G.R.G.Lanckriet N.Cristianini L.E.Ghaoui M.I.Jordan
Talks about:
learn (3) program (2) problem (2) markov (2) scale (2) onlin (2) decis (2) larg (2) crowdsourc (1) discoveri (1)
Person: Peter L. Bartlett
DBLP: Bartlett:Peter_L=
Contributed to:
Wrote 8 papers:
- ICML-2015-Abbasi-YadkoriB #crowdsourcing #markov #problem #scalability
- Large-Scale Markov Decision Problems with KL Control Cost and its Application to Crowdsourcing (YAY, PLB, XC, AM), pp. 1053–1062.
- ICML-c1-2014-Abbasi-YadkoriBK
- Tracking Adversarial Targets (YAY, PLB, VK), pp. 369–377.
- ICML-c1-2014-SeldinBCA #multi #predict
- Prediction with Limited Advice and Multiarmed Bandits with Paid Observations (YS, PLB, KC, YAY), pp. 280–287.
- ICML-c2-2014-MalekAB #linear #markov #problem #programming #scalability
- Linear Programming for Large-Scale Markov Decision Problems (AM, YAY, PLB), pp. 496–504.
- ICML-2010-KulisB #learning #online
- Implicit Online Learning (BK, PLB), pp. 575–582.
- ICML-2007-RakhlinAB #online #similarity
- Online discovery of similarity mappings (AR, JA, PLB), pp. 767–774.
- ICML-2002-LanckrietCBGJ #kernel #learning #matrix #programming
- Learning the Kernel Matrix with Semi-Definite Programming (GRGL, NC, PLB, LEG, MIJ), pp. 323–330.
- ICML-2000-BaxterB #learning
- Reinforcement Learning in POMDP’s via Direct Gradient Ascent (JB, PLB), pp. 41–48.