Travelled to:
1 × Canada
1 × Israel
1 × United Kingdom
2 × China
2 × Finland
2 × USA
Collaborated with:
G.Chechik Z.Wang S.Vucetic C.Gentile Y.Singer P.P.Talukdar F.C.N.Pereira M.Dredze F.Pereira Y.Seldin P.L.Bartlett Y.Abbasi-Yadkori M.Harel S.Mannor R.El-Yaniv N.Djuric M.Jacob M.S.Mehmood Z.G.Ives S.Guha
Talks about:
classif (3) class (3) adapt (3) regular (2) bandit (2) multi (2) one (2) multiclass (1) represent (1) nonlinear (1)
Person: Koby Crammer
DBLP: Crammer:Koby
Contributed to:
Wrote 11 papers:
- ICML-c1-2014-SeldinBCA #multi #predict
- Prediction with Limited Advice and Multiarmed Bandits with Paid Observations (YS, PLB, KC, YAY), pp. 280–287.
- ICML-c2-2014-HarelMEC #concept #detection
- Concept Drift Detection Through Resampling (MH, SM, REY, KC), pp. 1009–1017.
- ICML-2012-CrammerC #adaptation #metric #similarity
- Adaptive Regularization for Similarity Measures (KC, GC), p. 27.
- ICML-2011-CrammerG #adaptation #classification #feedback #multi #using
- Multiclass Classification with Bandit Feedback using Adaptive Regularization (KC, CG), pp. 273–280.
- KDD-2011-WangDCV #adaptation #classification #multi #scalability
- Trading representability for scalability: adaptive multi-hyperplane machine for nonlinear classification (ZW, ND, KC, SV), pp. 24–32.
- ICML-2010-WangCV #multi
- Multi-Class Pegasos on a Budget (ZW, KC, SV), pp. 1143–1150.
- ICML-2008-CrammerTP #clustering
- A rate-distortion one-class model and its applications to clustering (KC, PPT, FCNP), pp. 184–191.
- ICML-2008-DredzeCP #classification #linear
- Confidence-weighted linear classification (MD, KC, FP), pp. 264–271.
- VLDB-2008-TalukdarJMCIPG #learning #query
- Learning to create data-integrating queries (PPT, MJ, MSM, KC, ZGI, FCNP, SG), pp. 785–796.
- ICML-2004-CrammerC #optimisation
- A needle in a haystack: local one-class optimization (KC, GC).
- SIGIR-2002-CrammerS #algorithm #online #product line #ranking
- A new family of online algorithms for category ranking (KC, YS), pp. 151–158.