`Travelled to:`

1 × Sweden

5 × USA

`Collaborated with:`

F.G.V.Zee G.Quintana-Ortí E.S.Quintana-Ortí E.Chan B.Marker D.S.Batory T.M.Low F.D.Igual W.Gropp R.Thakur D.Giménez V.Hernández A.M.Vidal A.Terrel J.Poulson P.Bientinesi J.R.Diamond B.Robatmili S.W.Keckler K.Goto D.Burger

`Talks about:`

linear (4) dens (4) algorithm (3) algebra (3) architectur (2) processor (2) communic (2) schedul (2) perform (2) multipl (2)

## Person: Robert A. van de Geijn

### DBLP: Geijn:Robert_A=_van_de

### Contributed to:

### Wrote 9 papers:

- ASE-2014-MarkerBG #comprehension #heuristic #performance
- Understanding performance stairs: elucidating heuristics (BM, DSB, RAvdG), pp. 301–312.
- PPoPP-2012-MarkerTPBG #algebra #developer #linear
- Mechanizing the expert dense linear algebra developer (BM, AT, JP, DSB, RAvdG), pp. 289–290.
- PPoPP-2009-Quintana-OrtiIQG #hardware #linear #multi #platform
- Solving dense linear systems on platforms with multiple hardware accelerators (GQO, FDI, ESQO, RAvdG), pp. 121–130.
- PDP-2008-Quintana-OrtiQCGZ #algorithm #architecture #manycore #scheduling
- Scheduling of QR Factorization Algorithms on SMP and Multi-Core Architectures (GQO, ESQO, EC, RAvdG, FGVZ), pp. 301–310.
- PPoPP-2008-ChanZBQQG #named #parallel #runtime #scheduling #thread
- SuperMatrix: a multithreaded runtime scheduling system for algorithms-by-blocks (EC, FGVZ, PB, ESQO, GQO, RAvdG), pp. 123–132.
- PPoPP-2008-DiamondRKGGB #algebra #distributed #linear #performance
- High performance dense linear algebra on a spatially distributed processor (JRD, BR, SWK, RAvdG, KG, DB), pp. 63–72.
- PPoPP-2006-ChanGGT #architecture #communication #multi
- Collective communication on architectures that support simultaneous communication over multiple links (EC, RAvdG, WG, RT), pp. 2–11.
- PPoPP-2005-LowGZ #algebra #algorithm #linear #parallel #specification
- Extracting SMP parallelism for dense linear algebra algorithms from high-level specifications (TML, RAvdG, FGVZ), pp. 153–163.
- PDP-1996-GimenezGHV #symmetry
- Exploiting the Symmetry on the Jacobi Method on a Mesh of Processors (DG, RAvdG, VH, AMV), pp. 377–384.