Travelled to:
1 × Australia
1 × Canada
1 × Germany
1 × Taiwan
6 × USA
Collaborated with:
L.Todorovski K.Driessens ∅ B.Zenko E.Ikonomovska J.Gama N.Lavrac L.D.Raedt H.Blockeel P.Langley J.N.Sánchez A.Srinivasan J.P.Whiteley D.Gavaghan
Talks about:
learn (4) discoveri (3) relat (3) model (3) base (3) reinforc (2) knowledg (2) regress (2) databas (2) exampl (2)
Person: Saso Dzeroski
DBLP: Dzeroski:Saso
Facilitated 1 volumes:
Contributed to:
Wrote 13 papers:
- ICML-2011-IkonomovskaGZD
- Speeding-Up Hoeffding-Based Regression Trees With Options (EI, JG, BZ, SD), pp. 537–544.
- SAC-2011-IkonomovskaGD #data type #incremental #multi
- Incremental multi-target model trees for data streams (EI, JG, SD), pp. 988–993.
- ICML-2005-DriessensD #first-order #learning #modelling
- Combining model-based and instance-based learning for first order regression (KD, SD), pp. 193–200.
- ICML-2002-DriessensD #learning #relational
- Integrating Experimentation and Guidance in Relational Reinforcement Learning (KD, SD), pp. 115–122.
- ICML-2002-DzeroskiZ #classification
- Is Combining Classifiers Better than Selecting the Best One (SD, BZ), pp. 123–130.
- ICML-2002-LangleySTD #modelling #process
- Inducing Process Models from Continuous Data (PL, JNS, LT, SD), pp. 347–354.
- ICML-2000-TodorovskiDSWG #behaviour #difference #equation
- Discovering the Structure of Partial Differential Equations from Example Behaviour (LT, SD, AS, JPW, DG), pp. 991–998.
- ICML-1998-DzeroskiRB #learning #relational
- Relational Reinforcement Learning (SD, LDR, HB), pp. 136–143.
- ICML-1997-TodorovskiD #bias #declarative #equation
- Declarative Bias in Equation Discovery (LT, SD), pp. 376–384.
- AKDDM-1996-Dzeroski #database #induction #information management #logic programming
- Inductive Logic Programming and Knowledge Discovery in Databases (SD), pp. 117–152.
- KDD-1995-Dzeroski #database #information management #quality
- Knowledge Discovery in a Water Quality Database (SD), pp. 81–86.
- ICML-1993-DzeroskiT
- Discovering Dynamics (SD, LT), pp. 97–103.
- ML-1991-DzeroskiL #comparison #empirical #learning
- Learning Relations from Noisy Examples: An Empirical Comparison of LINUS and FOIL (SD, NL), pp. 399–402.