Travelled to:
1 × Australia
1 × Brazil
1 × Cyprus
1 × Germany
1 × Italy
1 × Korea
1 × Portugal
1 × Slovenia
1 × Taiwan
1 × United Kingdom
2 × France
2 × Spain
7 × USA
Collaborated with:
∅ P.P.Rodrigues C.Pinto P.Medas P.Kosina R.Sarmento M.Cordeiro R.Sebastião E.J.Spinosa R.Rocha E.R.Faria A.C.P.L.F.Carvalho E.Ikonomovska S.Dzeroski J.Vinagre A.M.Jorge V.Cerqueira M.D.B.Oliveira E.Almeida S.Krishnaswamy M.M.Gaber H.Kargupta W.Fan A.C.P.L.F.d.Carvalho A.C.P.d.L.F.d.Carvalho L.Moreira-Matias J.Mendes-Moreira P.Brazdil R.C.Barros B.Zenko J.Araújo L.M.B.Lopes P.Matuszyk M.Spiliopoulou
Talks about:
data (15) stream (14) tree (8) network (5) cluster (5) base (5) algorithm (4) detect (4) mine (4) increment (3)
Person: João Gama
DBLP: Gama:Jo=atilde=o
Contributed to:
Wrote 28 papers:
- ICEIS-v1-2015-CerqueiraOG #community #framework #network #scalability #social
- A Framework for Analysing Dynamic Communities in Large-scale Social Networks (VC, MDBO, JG), pp. 235–242.
- ICEIS-v1-2015-SarmentoCG #network #streaming #using
- Streaming Networks Sampling using top-K Networks (RS, MC, JG), pp. 228–234.
- SAC-2015-MatuszykVSJG #incremental #matrix #recommendation
- Forgetting methods for incremental matrix factorization in recommender systems (PM, JV, MS, AMJ, JG), pp. 947–953.
- SAC-2015-SarmentoCG #evolution #scalability #visualisation
- Visualization of evolving large scale ego-networks (RS, MC, JG), pp. 960–962.
- SAC-2015-VinagreJG #collaboration #feedback
- Collaborative filtering with recency-based negative feedback (JV, AMJ, JG), pp. 963–965.
- SAC-2013-AlmeidaKG #data type #random
- Random rules from data streams (EA, PK, JG), pp. 813–814.
- SAC-2013-FariaGC #algorithm #data type #detection #multi #problem
- Novelty detection algorithm for data streams multi-class problems (ERF, JG, ACPLFC), pp. 795–800.
- MLDM-2012-Moreira-MatiasMGB #categorisation #classification #matrix #using
- Text Categorization Using an Ensemble Classifier Based on a Mean Co-association Matrix (LMM, JMM, JG, PB), pp. 525–539.
- SAC-2012-FariaBGC #algorithm #clustering #data type
- Improving the offline clustering stage of data stream algorithms in scenarios with variable number of clusters (ERF, RCB, JG, ACPLFC), pp. 829–830.
- SAC-2012-KosinaG #multi #performance #problem
- Very Fast Decision Rules for multi-class problems (PK, JG), pp. 795–800.
- CIKM-2011-KrishnaswamyGG #data type #mining #mobile #roadmap #ubiquitous
- Advances in data stream mining for mobile and ubiquitous environments (SK, JG, MMG), pp. 2607–2608.
- ICML-2011-IkonomovskaGZD
- Speeding-Up Hoeffding-Based Regression Trees With Options (EI, JG, BZ, SD), pp. 537–544.
- SAC-2011-IkonomovskaGD #data type #incremental #multi
- Incremental multi-target model trees for data streams (EI, JG, SD), pp. 988–993.
- SAC-2011-RodriguesGAL #clustering #named
- L2GClust: local-to-global clustering of stream sources (PPR, JG, JA, LMBL), pp. 1006–1011.
- KDD-2010-KarguptaGF #data mining #generative #mining
- The next generation of transportation systems, greenhouse emissions, and data mining (HK, JG, WF), pp. 1209–1212.
- KDD-2009-GamaSR #algorithm #evaluation #learning
- Issues in evaluation of stream learning algorithms (JG, RS, PPR), pp. 329–338.
- SAC-2009-GamaRS #algorithm #data type
- Evaluating algorithms that learn from data streams (JG, PPR, RS), pp. 1496–1500.
- SAC-2008-SpinosaCG #clustering #concept #data type #detection #network #novel
- Cluster-based novel concept detection in data streams applied to intrusion detection in computer networks (EJS, ACPLFdC, JG), pp. 976–980.
- SAC-2007-PintoG #concept #incremental
- Incremental discretization, application to data with concept drift (CP, JG), pp. 467–468.
- SAC-2007-SpinosaCG #approach #clustering #concept #data type #detection #named
- OLINDDA: a cluster-based approach for detecting novelty and concept drift in data streams (EJS, ACPdLFdC, JG), pp. 448–452.
- SAC-2006-GamaP #data mining #data type #mining
- Discretization from data streams: applications to histograms and data mining (JG, CP), pp. 662–667.
- SAC-2005-GamaMR #data type #learning
- Learning decision trees from dynamic data streams (JG, PM, PPR), pp. 573–577.
- SAC-2004-GamaMR #online
- Forest trees for on-line data (JG, PM, RR), pp. 632–636.
- KDD-2003-GamaRM #data type #mining #performance
- Accurate decision trees for mining high-speed data streams (JG, RR, PM), pp. 523–528.
- ICML-2002-Gama #analysis #functional
- An Analysis of Functional Trees (JG), pp. 155–162.
- ICML-1999-Gama
- Discriminant Trees (JG), pp. 134–142.
- ICML-1998-Gama
- Local Cascade Generalization (JG), pp. 206–214.
- ICML-1997-Gama #linear #probability
- Probabilistic Linear Tree (JG), pp. 134–142.