Lawrence Birnbaum, Gregg Collins
Proceedings of the Eighth International Workshop on Machine Learning
ML, 1991.
@proceedings{ML-1991, address = "Evanston, Illinois, USA", editor = "Lawrence Birnbaum and Gregg Collins", isbn = "1-55860-200-3", publisher = "{Morgan Kaufmann}", title = "{Proceedings of the Eighth International Workshop on Machine Learning}", year = 1991, }
Contents (128 items)
- ML-1991-GruberBBW #design #information management
- Design Rationale Capture as Knowledge Acquisition (TRG, CB, JHB, JW), pp. 3–12.
- ML-1991-Gil #effectiveness #framework #independence
- A Domain-Independent Framework for Effective Experimentation in Planning (YG), pp. 13–17.
- ML-1991-Jones #refinement #using
- Knowledge Refinement Using a High Level, Non-Technical Vocabulary (EKJ), pp. 18–22.
- ML-1991-MaW #consistency #knowledge base #optimisation #performance
- Improving the Performance of Inconsistent Knowledge Bases via Combined Optimization Method (YM, DCW), pp. 23–27.
- ML-1991-CrawS #flexibility #refinement
- The Flexibility of Speculative Refinement (SC, DHS), pp. 28–32.
- ML-1991-WeintraubB #fault #generative #knowledge base
- Generating Error Candidates for Assigning Blame in a Knowledge Base (MAW, TB), pp. 33–37.
- ML-1991-Maza #concept #learning #prototype
- A Prototype Based Symbolic Concept Learning System (MdlM), pp. 41–45.
- ML-1991-FisherY #similarity
- Combining Evidence of Deep and Surface Similarity (DHF, JPY), pp. 46–50.
- ML-1991-GickM
- The Importance of Causal Structure and Facts in Evaluating Explanations (MG, SM), pp. 51–54.
- ML-1991-HastingsLL #learning #word
- Learning Words From Context (PMH, SLL, RKL), pp. 55–59.
- ML-1991-Iba #modelling
- Modeling the Acquisition and Improvement of Motor Skkills (WI), pp. 60–64.
- ML-1991-JonesV
- A Computational Model of Acquisition for Children’s Addtion Strategies (RMJ, KV), pp. 65–69.
- ML-1991-JordanR #learning #modelling
- Internal World Models and Supervised Learning (MIJ, DER), pp. 70–74.
- ML-1991-Kazman #named
- Babel: A Psychologically Plausible Cross-Linguistic Model of Lexical and Syntactic Acquisition (RK), pp. 75–79.
- ML-1991-LangleyA
- The Acquisition of Human Planning Expertise (PL, JAA), pp. 80–84.
- ML-1991-LevinsonS #adaptation
- Adaptive Pattern-Oriented Chess (RL, RS), pp. 85–89.
- ML-1991-MartinB #bias #learning #variability
- Variability Bias and Category Learning (JDM, DB), pp. 90–94.
- ML-1991-MillerL #constraints
- A Constraint-Motivated Model of Lexical Acquisition (CSM, JEL), pp. 95–99.
- ML-1991-NichollW #modelling #order
- Computer Modelling of Acquisition Orders in Child Language (SN, DCW), pp. 100–104.
- ML-1991-Shultz #development #modelling #simulation
- Simulating Stages of Human Cognitive Development With Connectionist Models (TRS), pp. 105–109.
- ML-1991-VanLehnJ #correctness #learning #physics
- Learning Physics Via Explanation-Based Learning of Correctness and Analogical Search Control (KV, RMJ), pp. 110–114.
- ML-1991-Aha #approach #incremental #induction
- Incremental Constructive Induction: An Instance-Based Approach (DWA), pp. 117–121.
- ML-1991-CallanU #approach #induction
- A Transformational Approach to Constructive Induction (JPC, PEU), pp. 122–126.
- ML-1991-Day #csp #heuristic #learning #problem
- Learning Variable Descriptors for Applying Heuristics Across CSP Problems (DSD), pp. 127–131.
- ML-1991-Drastal #induction
- Informed Pruning in Constructive Induction (GD), pp. 132–136.
- ML-1991-FawcettU #generative #hybrid
- A Hybrid Method for Feature Generation (TF, PEU), pp. 137–141.
- ML-1991-GiordanaSR #concept
- Abstracting Concepts with Inverse Resolution (AG, LS, DR), pp. 142–146.
- ML-1991-GunschR #induction
- Opportunistic Constructive Induction (GHG, LAR), pp. 147–152.
- ML-1991-Kadie #induction #learning
- Quantifying the Value of Constructive Induction, Knowledge, and Noise Filtering on Inductive Learning (CMK), pp. 153–157.
- ML-1991-KowalczykFG #higher-order #network
- Discovering Production Rules with Higher Order Neural Networks (AK, HLF, KG), pp. 158–162.
- ML-1991-LengB #induction
- Constructive Induction on Symbolic Features (BL, BGB), pp. 163–167.
- ML-1991-LingN #comparison
- Comparison of Methods Based on Inverse Resolution (XL, MAN), pp. 168–172.
- ML-1991-Matheus #induction
- The Need for Constructive Induction (CJM), pp. 173–177.
- ML-1991-MooneyO #induction #refinement
- Constructive Induction in Theory Refinement (RJM, DO), pp. 178–182.
- ML-1991-MurphyP #induction
- Constructive Induction of M-of-N Terms (PMM, MJP), pp. 183–187.
- ML-1991-RagavanR #empirical #learning
- Relations, Knowledge and Empirical Learning (HR, LAR), pp. 188–192.
- ML-1991-OliveiraS #concept #learning #network
- Learning Concepts by Synthesizing Minimal Threshold Gate Networks (ALO, ALSV), pp. 193–197.
- ML-1991-Saxena #on the #representation
- On the Effect of Instance Representation on Generalization (SS), pp. 198–202.
- ML-1991-SilversteinP #induction #learning #relational
- Relational Clichés: Constraining Induction During Relational Learning (GS, MJP), pp. 203–207.
- ML-1991-SuttonM #learning #polynomial
- Learning Polynomial Functions by Feature Construction (RSS, CJM), pp. 208–212.
- ML-1991-TowellCS #induction #knowledge-based #network
- Constructive Induction in Knowledge-Based Neural Networks (GGT, MC, JWS), pp. 213–217.
- ML-1991-WatanabeR
- Feature Construction in Structural Decision Trees (LW, LAR), pp. 218–222.
- ML-1991-YangRB #case study #comparative
- Fringe-Like Feature Construction: A Comparative Study and a Unifying Scheme (DSY, LAR, GB), pp. 223–227.
- ML-1991-Yeung #approach #induction #network
- A Neural Network Approach to Constructive Induction (DYY), pp. 228–232.
- ML-1991-Lewis #information retrieval #learning
- Learning in Intelligent Information Retrieval (DDL), pp. 235–239.
- ML-1991-BhuyanR #adaptation #clustering #information retrieval #probability
- A Probabilistic Retrieval Scheme for Cluster-based Adaptive Information Retrieval (JNB, VVR), pp. 240–244.
- ML-1991-CrawfordFAT #classification #information retrieval
- Classification Trees for Information Retrieval (SLC, RMF, LAA, RMT), pp. 245–249.
- ML-1991-BhatiaDR #information management #query
- Query Formulation Through Knowledge Acquisition (SKB, JSD, VVR), pp. 250–254.
- ML-1991-GokerM #incremental #information retrieval #learning
- Incremental Learning in a Probalistic Information Retrieval System (AG, TLM), pp. 255–259.
- ML-1991-Kwok #adaptation #architecture #learning #query #using
- Query Learning Using an ANN with Adaptive Architecture (KLK), pp. 260–264.
- ML-1991-RamH #approach #information retrieval
- A Goal-Based Approach to Intelligent Information Retrieval (AR, LH), pp. 265–269.
- ML-1991-Thompson #approach #information retrieval #machine learning
- Machine Learning in the Combination of Expert Opinion Approach to IR (PT), pp. 270–274.
- ML-1991-Walczak #induction #performance #predict
- Predicting Actions from Induction on Past Performance (SW), pp. 275–279.
- ML-1991-Brand #learning
- Decision-Theoretic Learning in an Action System (MB), pp. 283–287.
- ML-1991-ChienGD #learning #on the
- On Becoming Decreasingly Reactive: Learning to Deliberate Minimally (SAC, MTG, GD), pp. 288–292.
- ML-1991-CobbG #learning #persistent
- Learning the Persistence of Actions in Reactive Control Rules (HGC, JJG), pp. 292–297.
- ML-1991-MillanT #learning
- Learning to Avoid Obstacles Through Reinforcement (JdRM, CT), pp. 298–302.
- ML-1991-HsuS #evaluation #learning
- Learning Football Evaluation for a Walking Robot (GTH, RGS), pp. 303–307.
- ML-1991-KedarBD #approximate #refinement
- The Blind Leading the Blind: Mutual Refinement of Approximate Theories (SK, JLB, CLD), pp. 308–312.
- ML-1991-KokarR #learning
- Learning to Select a Model in a Changing World (MMK, SAR), pp. 313–317.
- ML-1991-Krulwich #learning
- Learning from Deliberated Reactivity (BK), pp. 318–322.
- ML-1991-Lin #education #learning #self
- Self-improvement Based on Reinforcement Learning, Planning and Teaching (LJL), pp. 323–327.
- ML-1991-MahadevanC #architecture #learning #scalability
- Scaling Reinforcement Learning to Robotics by Exploiting the Subsumption Architecture (SM, JC), pp. 328–332.
- ML-1991-Moore #programming
- Variable Resolution Dynamic Programming (AWM), pp. 333–337.
- ML-1991-Pierce #learning #set
- Learning a Set of Primitive Actions with an Uninterpreted Sensorimotor Apparatus (DRP), pp. 338–342.
- ML-1991-Ring #behaviour #development #incremental
- Incremental Development of Complex Behaviors (MBR), pp. 343–347.
- ML-1991-Singh #composition #learning
- Transfer of Learning Across Compositions of Sequentail Tasks (SPS), pp. 348–352.
- ML-1991-Sutton #incremental #programming
- Planning by Incremental Dynamic Programming (RSS), pp. 353–357.
- ML-1991-Tan #learning #representation
- Learning a Cost-Sensitive Internal Representation for Reinforcement Learning (MT), pp. 358–362.
- ML-1991-Whitehead #complexity
- Complexity and Cooperation in Q-Learning (SDW), pp. 363–367.
- ML-1991-AllenT #concept #probability #relational
- Probabilistic Concept Formation in Relational Domains (JAA, KT), pp. 375–379.
- ML-1991-Bain #learning
- Experiments in Non-Monotonic Learning (MB), pp. 380–384.
- ML-1991-BratkoMV #learning #modelling
- Learning Qualitative Models of Dynamic Systems (IB, SM, AV), pp. 385–388.
- ML-1991-BrunkP #algorithm #concept #learning #relational
- An Investigation of Noise-Tolerant Relational Concept Learning Algorithms (CB, MJP), pp. 389–393.
- ML-1991-RaedtBM #concept #constraints #interactive
- Integrity Constraints and Interactive Concept-Learning (LDR, MB, BM), pp. 394–398.
- ML-1991-DzeroskiL #comparison #empirical #learning
- Learning Relations from Noisy Examples: An Empirical Comparison of LINUS and FOIL (SD, NL), pp. 399–402.
- ML-1991-Feng #fault
- Inducing Temporal Fault Diagnostic Rules from a Qualitative Model (CF), pp. 403–406.
- ML-1991-HirakiGYA #image #learning
- Learning Spatial Relations from Images (KH, JHG, YY, YA), pp. 407–411.
- ML-1991-HummeS #using
- Using Inverse Resolution to Learn Relations from Experiments (DH, CS), pp. 412–416.
- ML-1991-KijsirikulNS #learning #logic programming #performance #source code
- Efficient Learning of Logic Programs with Non-determinant, Non-discriminating Literals (BK, MN, MS), pp. 417–421.
- ML-1991-LeckieZ #approach #induction #learning
- Learning Search Control Rules for Planning: An Inductive Approach (CL, IZ), pp. 422–426.
- ML-1991-PageF #learning
- Learning Constrained Atoms (CDPJ, AMF), pp. 427–431.
- ML-1991-PazzaniBS #approach #concept #learning #relational
- A Knowledge-intensive Approach to Learning Relational Concepts (MJP, CB, GS), pp. 432–436.
- ML-1991-QianI #axiom #concept #consistency
- The Consistent Concept Axiom (ZQ, KBI), pp. 437–441.
- ML-1991-Quinlan #induction #logic programming
- Determinate Literals in Inductive Logic Programming (JRQ), pp. 442–446.
- ML-1991-RichardsM #first-order
- First-Order Theory Revision (BLR, RJM), pp. 447–451.
- ML-1991-Rouveirol #induction
- Completeness for Inductive Procedures (CR), pp. 452–456.
- ML-1991-WirthO #constraints
- Constraints on Predicate Invention (RW, PO), pp. 457–461.
- ML-1991-Wogulis #relational
- Revising Relational Domain Theories (JW), pp. 462–466.
- ML-1991-YamanishiK #learning #probability #search-based #sequence
- Learning Stochastic Motifs from Genetic Sequences (KY, AK), pp. 467–471.
- ML-1991-Berenji #approximate #learning #refinement
- Refinement of Approximate Reasoning-based Controllers by Reinforcement Learning (HRB), pp. 475–479.
- ML-1991-BottaRSS #abduction #learning #using
- Improving Learning Using Causality and Abduction (MB, SR, LS, SBS), pp. 480–484.
- ML-1991-Cain
- The DUCTOR: A Theory Revision System for Propositional Domains (TC), pp. 485–489.
- ML-1991-Cohen
- The Generality of Overgenerality (WWC), pp. 490–494.
- ML-1991-desJardins #bias #learning #probability
- Probabilistic Evaluating of Bias for Learning Systems (Md), pp. 495–499.
- ML-1991-FeldmanSK #approximate #incremental #refinement
- Incremental Refinement of Approximate Domain Theories (RF, AMS, MK), pp. 500–504.
- ML-1991-Gordon
- An Enhancer for Reactive Plans (DFG), pp. 505–508.
- ML-1991-GratchD #approach #effectiveness #hybrid
- A Hybrid Approach to Guaranteed Effective Control Strategies (JG, GD), pp. 509–513.
- ML-1991-Hamakawa #refinement
- Revision Cost for Theory Refinement (RH), pp. 514–518.
- ML-1991-LingV
- Revision of Reduced Theories (XL, MV), pp. 519–523.
- ML-1991-MaclinS #automaton #finite
- Refining Domain Theories Expressed as Finite-State Automata (RM, JWS), pp. 524–528.
- ML-1991-Nedellec
- A Smallest Generalization Step Strategy (CN), pp. 529–533.
- ML-1991-OurstonM #multi
- Improving Shared Rules in Multiple Category Domain Theories (DO, RJM), pp. 534–538.
- ML-1991-Shen #knowledge base #scalability
- Discovering Regularities from Large Knowledge Bases (WMS), pp. 539–543.
- ML-1991-Tadepalli #learning
- Learning with Incrutable Theories (PT), pp. 544–548.
- ML-1991-TecuciM #adaptation #learning #multi
- A Method for Multistrategy Task-Adaptive Learning Based on Plausible Justifications (GT, RSM), pp. 549–553.
- ML-1991-ThompsonLI #concept #using
- Using Background Knowledge in Concept Formation (KT, PL, WI), pp. 554–558.
- ML-1991-WhitehallL #case study #how #knowledge-based #learning
- A Study of How Domain Knowledge Improves Knowledge-Based Learning Systems (BLW, SCYL), pp. 559–563.
- ML-1991-WisniewskiM #data-driven
- Is it a Pocket or a Purse? Tighly Coupled Theory and Data Driven Learing (EJW, DLM), pp. 564–568.
- ML-1991-YooF #bound #effectiveness #identification
- Identifying Cost Effective Boundaries of Operationality (JPY, DHF), pp. 569–573.
- ML-1991-ChienWDDFGL #automation #machine learning
- Machine Learning in Engineering Automation (SAC, BLW, TGD, RJD, BF, JG, SCYL), pp. 577–580.
- ML-1991-BelyaevF #classification
- Noise-Resistant Classification (LVB, LPF), pp. 581–585.
- ML-1991-BennettD #probability
- Comparing Stochastic Planning to the Acquisition of Increasingly Permissive Plans (SB, GD), pp. 586–590.
- ML-1991-BiswasWYK #clustering #concept #data analysis
- Conceptual Clustering and Exploratory Data Analysis (GB, JBW, QY, GRK), pp. 591–595.
- ML-1991-Catlett #named
- Megainduction: A Test Flight (JC), pp. 596–599.
- ML-1991-CerboneD #compilation #optimisation
- Knowledge Compilation to Speed Up Numerical Optimization (GC, TGD), pp. 600–604.
- ML-1991-Goel #formal method #incremental #learning
- Model Revision: A Theory of Incremental Model Learning (AKG), pp. 605–609.
- ML-1991-Herrmann #learning
- Learning Analytical Knowledge About VLSI-Design from Observation (JH), pp. 610–614.
- ML-1991-Kadie91a #concept #learning #set
- Continous Conceptual Set Covering: Learning Robot Operators From Examples (CMK), pp. 615–619.
- ML-1991-ORorkeMABC #evaluation #machine learning
- Machine Learning for Nondestructive Evaluation (PO, SM, MA, WB, DCSC), pp. 620–624.
- ML-1991-PachowiczB #concept #effectiveness #recognition
- Improving Recognition Effectiveness of Noisy Texture Concepts (PP, JWB), pp. 625–629.
- ML-1991-RaoLS #equation #knowledge-based
- Knowledge-Based Equation Discovery in Engineering Domains (RBR, SCYL, RES), pp. 630–634.
- ML-1991-Reich #design #learning
- Design Integrated Learning Systems for Engineering Design (YR), pp. 635–639.
- ML-1991-Schlimmer #consistency #database #induction #learning
- Database Consistency via Inductive Learning (JCS), pp. 640–644.
- ML-1991-TchengLLR #adaptation #interactive #modelling #named
- AIMS: An Adaptive Interactive Modeling System for Supporting Engineering Decision Making (DKT, BLL, SCYL, LAR), pp. 645–649.
- ML-1991-WatanabeY #3d #induction
- Decision Tree Induction of 3-D Manufacturing Features (LW, SY), pp. 650–654.
- ML-1991-MartinSC #information management
- Knowledge Acquisition Combining Analytical and Empirrcal Techniques (MM, RS, UC), pp. 657–661.
- ML-1991-Wixson #composition #learning #scalability
- Scaling Reinforcement Learning Techniques via Modularity (LEW), pp. 3368–372.
48 ×#learning
18 ×#induction
12 ×#concept
8 ×#approach
7 ×#refinement
6 ×#incremental
6 ×#information retrieval
6 ×#modelling
5 ×#adaptation
5 ×#probability
18 ×#induction
12 ×#concept
8 ×#approach
7 ×#refinement
6 ×#incremental
6 ×#information retrieval
6 ×#modelling
5 ×#adaptation
5 ×#probability