Lise Getoor, Tobias Scheffer
Proceedings of the 28th International Conference on Machine Learning
ICML, 2011.
@proceedings{ICML-2011, address = "Bellevue, Washington, USA", editor = "Lise Getoor and Tobias Scheffer", publisher = "{Omnipress}", title = "{Proceedings of the 28th International Conference on Machine Learning}", year = 2011, }
Contents (152 items)
- ICML-2011-LiuWKC #graph
- Hashing with Graphs (WL, JW, SK, SFC), pp. 1–8.
- ICML-2011-ZhongK #automation #modelling #performance
- Efficient Sparse Modeling with Automatic Feature Grouping (WZ, JTK), pp. 9–16.
- ICML-2011-BiK #classification #multi
- MultiLabel Classification on Tree- and DAG-Structured Hierarchies (WB, JTK), pp. 17–24.
- ICML-2011-HeL #framework #learning #multi
- A Graphbased Framework for Multi-Task Multi-View Learning (JH, RL), pp. 25–32.
- ICML-2011-ZhouT #composition #matrix #named #random
- GoDec: Randomized Lowrank & Sparse Matrix Decomposition in Noisy Case (TZ, DT), pp. 33–40.
- ICML-2011-YuM
- Unimodal Bandits (JYY, SM), pp. 41–48.
- ICML-2011-DinuzzoOGP #coordination #kernel #learning
- Learning Output Kernels with Block Coordinate Descent (FD, CSO, PVG, GP), pp. 49–56.
- ICML-2011-MinhS
- Vector-valued Manifold Regularization (HQM, VS), pp. 57–64.
- ICML-2011-SugiyamaYKH #clustering #on the #parametricity
- On Information-Maximization Clustering: Tuning Parameter Selection and Analytic Solution (MS, MY, MK, HH), pp. 65–72.
- ICML-2011-NockMBN #adaptation #on the
- On tracking portfolios with certainty equivalents on a generalization of Markowitz model: the Fool, the Wise and the Adaptive (RN, BM, EB, FN), pp. 73–80.
- ICML-2011-BabenkoVDB #learning #multi
- Multiple Instance Learning with Manifold Bags (BB, NV, PD, SB), pp. 81–88.
- ICML-2011-JiangR #feature model
- Eigenvalue Sensitive Feature Selection (YJ, JR), pp. 89–96.
- ICML-2011-SuSM #classification #multi #naive bayes #scalability #using
- Large Scale Text Classification using Semisupervised Multinomial Naive Bayes (JS, JSS, SM), pp. 97–104.
- ICML-2011-ChoRI #adaptation #learning #strict
- Enhanced Gradient and Adaptive Learning Rate for Training Restricted Boltzmann Machines (KC, TR, AI), pp. 105–112.
- ICML-2011-TarlowBKK #coordination
- Dynamic Tree Block Coordinate Ascent (DT, DB, PK, VK), pp. 113–120.
- ICML-2011-MahoneyO #approximate #implementation
- Implementing regularization implicitly via approximate eigenvector computation (MWM, LO), pp. 121–128.
- ICML-2011-SocherLNM #natural language #network #parsing #recursion
- Parsing Natural Scenes and Natural Language with Recursive Neural Networks (RS, CCYL, AYN, CDM), pp. 129–136.
- ICML-2011-ThomasB #markov #process
- Conjugate Markov Decision Processes (PST, AGB), pp. 137–144.
- ICML-2011-LuB #learning #modelling
- Learning Mallows Models with Pairwise Preferences (TL, CB), pp. 145–152.
- ICML-2011-Scott #bound #classification
- Surrogate losses and regret bounds for cost-sensitive classification with example-dependent costs (CS), pp. 153–160.
- ICML-2011-JawanpuriaNR #kernel #learning #performance #using
- Efficient Rule Ensemble Learning using Hierarchical Kernels (PJ, JSN, GR), pp. 161–168.
- ICML-2011-MartinsFASX #approach
- An Augmented Lagrangian Approach to Constrained MAP Inference (AFTM, MATF, PMQA, NAS, EPX), pp. 169–176.
- ICML-2011-MannorT #markov #optimisation #process
- Mean-Variance Optimization in Markov Decision Processes (SM, JNT), pp. 177–184.
- ICML-2011-LiP #clustering #exclamation
- Time Series Clustering: Complex is Simpler! (LL, BAP), pp. 185–192.
- ICML-2011-Gould #learning #linear #markov #random
- Max-margin Learning for Lower Linear Envelope Potentials in Binary Markov Random Fields (SG), pp. 193–200.
- ICML-2011-Clark
- Inference of Inversion Transduction Grammars (AC), pp. 201–208.
- ICML-2011-HuWC #coordination #kernel #learning #named #parametricity #scalability #using
- BCDNPKL: Scalable Non-Parametric Kernel Learning Using Block Coordinate Descent (EH, BW, SC), pp. 209–216.
- ICML-2011-Maaten #kernel #learning
- Learning Discriminative Fisher Kernels (LvdM), pp. 217–224.
- ICML-2011-KpotufeL #clustering #nearest neighbour
- Pruning nearest neighbor cluster trees (SK, UvL), pp. 225–232.
- ICML-2011-ZhaoHJY #online
- Online AUC Maximization (PZ, SCHH, RJ, TY), pp. 233–240.
- ICML-2011-YueJ
- Beat the Mean Bandit (YY, TJ), pp. 241–248.
- ICML-2011-OrabonaL #algorithm #kernel #learning #multi #optimisation
- Ultra-Fast Optimization Algorithm for Sparse Multi Kernel Learning (FO, JL), pp. 249–256.
- ICML-2011-Potetz #linear #problem #using
- Estimating the Bayes Point Using Linear Knapsack Problems (BP), pp. 257–264.
- ICML-2011-LeNCLPN #learning #on the #optimisation
- On optimization methods for deep learning (QVL, JN, AC, AL, BP, AYN), pp. 265–272.
- ICML-2011-CrammerG #adaptation #classification #feedback #multi #using
- Multiclass Classification with Bandit Feedback using Adaptive Regularization (KC, CG), pp. 273–280.
- ICML-2011-HelmboldL #on the
- On the Necessity of Irrelevant Variables (DPH, PML), pp. 281–288.
- ICML-2011-BarthelmeC #named
- ABC-EP: Expectation Propagation for Likelihoodfree Bayesian Computation (SB, NC), pp. 289–296.
- ICML-2011-GermainLLMS #approach #kernel
- A PAC-Bayes Sample-compression Approach to Kernel Methods (PG, AL, FL, MM, SS), pp. 297–304.
- ICML-2011-TamarCM #algorithm
- Integrating Partial Model Knowledge in Model Free RL Algorithms (AT, DDC, RM), pp. 305–312.
- ICML-2011-JimenezS #performance
- Fast Newton-type Methods for Total Variation Regularization (ÁBJ, SS), pp. 313–320.
- ICML-2011-BradleyKBG #coordination #parallel
- Parallel Coordinate Descent for L1-Regularized Loss Minimization (JKB, AK, DB, CG), pp. 321–328.
- ICML-2011-Shalev-ShwartzGS #constraints #rank #scalability
- Large-Scale Convex Minimization with a Low-Rank Constraint (SSS, AG, OS), pp. 329–336.
- ICML-2011-HannahD #approximate #problem #programming
- Approximate Dynamic Programming for Storage Problems (LH, DBD), pp. 337–344.
- ICML-2011-JegelkaB #combinator #online
- Online Submodular Minimization for Combinatorial Structures (SJ, JAB), pp. 345–352.
- ICML-2011-NorouziF
- Minimal Loss Hashing for Compact Binary Codes (MN, DJF), pp. 353–360.
- ICML-2011-ChenPSDC #analysis #learning #process
- The Hierarchical Beta Process for Convolutional Factor Analysis and Deep Learning (BC, GP, GS, DBD, LC), pp. 361–368.
- ICML-2011-GuilloryB #learning
- Simultaneous Learning and Covering with Adversarial Noise (AG, JAB), pp. 369–376.
- ICML-2011-ChenDC #markov #modelling #parametricity #topic
- Topic Modeling with Nonparametric Markov Tree (HC, DBD, LC), pp. 377–384.
- ICML-2011-KuwadekarN #classification #learning #modelling #relational
- Relational Active Learning for Joint Collective Classification Models (AK, JN), pp. 385–392.
- ICML-2011-KumarD #approach #clustering #multi
- A Co-training Approach for Multi-view Spectral Clustering (AK, HDI), pp. 393–400.
- ICML-2011-HarelM #learning #multi
- Learning from Multiple Outlooks (MH, SM), pp. 401–408.
- ICML-2011-CossalterYZ #adaptation #approximate #kernel #predict #scalability
- Adaptive Kernel Approximation for Large-Scale Non-Linear SVM Prediction (MC, RY, LZ), pp. 409–416.
- ICML-2011-Garcia-GarciaLS
- Risk-Based Generalizations of f-divergences (DGG, UvL, RSR), pp. 417–424.
- ICML-2011-QuadriantoL #learning #multi
- Learning Multi-View Neighborhood Preserving Projections (NQ, CHL), pp. 425–432.
- ICML-2011-OrabonaC #algorithm
- Better Algorithms for Selective Sampling (FO, NCB), pp. 433–440.
- ICML-2011-RobbianoC #learning #plugin #ranking
- Minimax Learning Rates for Bipartite Ranking and Plug-in Rules (SR, SC), pp. 441–448.
- ICML-2011-JetchevT #feedback #retrieval #using
- Task Space Retrieval Using Inverse Feedback Control (NJ, MT), pp. 449–456.
- ICML-2011-VirtanenKK
- Bayesian CCA via Group Sparsity (SV, AK, SK), pp. 457–464.
- ICML-2011-DeisenrothR #approach #modelling #named #policy
- PILCO: A Model-Based and Data-Efficient Approach to Policy Search (MPD, CER), pp. 465–472.
- ICML-2011-KarasuyamaT #algorithm
- Suboptimal Solution Path Algorithm for Support Vector Machine (MK, IT), pp. 473–480.
- ICML-2011-SunGRS #difference #fault #incremental
- Incremental Basis Construction from Temporal Difference Error (YS, FJG, MBR, JS), pp. 481–488.
- ICML-2011-GerrishB #predict
- Predicting Legislative Roll Calls from Text (SG, DMB), pp. 489–496.
- ICML-2011-NakajimaSB #automation #on the
- On Bayesian PCA: Automatic Dimensionality Selection and Analytic Solution (SN, MS, SDB), pp. 497–504.
- ICML-2011-Bylander #learning #linear #multi #polynomial
- Learning Linear Functions with Quadratic and Linear Multiplicative Updates (TB), pp. 505–512.
- ICML-2011-GlorotBB #adaptation #approach #classification #learning #scalability #sentiment
- Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning Approach (XG, AB, YB), pp. 513–520.
- ICML-2011-KangGS #learning #multi
- Learning with Whom to Share in Multi-task Feature Learning (ZK, KG, FS), pp. 521–528.
- ICML-2011-Reyzin #predict
- Boosting on a Budget: Sampling for Feature-Efficient Prediction (LR), pp. 529–536.
- ICML-2011-IkonomovskaGZD
- Speeding-Up Hoeffding-Based Regression Trees With Options (EI, JG, BZ, SD), pp. 537–544.
- ICML-2011-MeyerBS #approach #constraints #linear
- Linear Regression under Fixed-Rank Constraints: A Riemannian Approach (GM, SB, RS), pp. 545–552.
- ICML-2011-LuoDNH #graph
- Cauchy Graph Embedding (DL, CHQD, FN, HH), pp. 553–560.
- ICML-2011-Gomez-RodriguezBS #network
- Uncovering the Temporal Dynamics of Diffusion Networks (MGR, DB, BS), pp. 561–568.
- ICML-2011-GaoK #multi
- Multiclass Boosting with Hinge Loss based on Output Coding (TG, DK), pp. 569–576.
- ICML-2011-JegelkaB11a #approximate #bound #using
- Approximation Bounds for Inference using Cooperative Cuts (SJ, JAB), pp. 577–584.
- ICML-2011-Hernandez-OralloFR #classification #cost analysis #performance #visualisation
- Brier Curves: a New Cost-Based Visualisation of Classifier Performance (JHO, PAF, CFR), pp. 585–592.
- ICML-2011-BrouarddS #kernel #predict
- Semi-supervised Penalized Output Kernel Regression for Link Prediction (CB, FdB, MS), pp. 593–600.
- ICML-2011-NikolenkoS #contest #rating
- A New Bayesian Rating System for Team Competitions (SIN, AS), pp. 601–608.
- ICML-2011-SujeethLBRCWAOO #domain-specific language #machine learning #named #parallel
- OptiML: An Implicitly Parallel Domain-Specific Language for Machine Learning (AKS, HL, KJB, TR, HC, MW, ARA, MO, KO), pp. 609–616.
- ICML-2011-ZhuCX #infinity #kernel #process
- Infinite SVM: a Dirichlet Process Mixture of Large-margin Kernel Machines (JZ, NC, EPX), pp. 617–624.
- ICML-2011-LiZSC #integration #learning #modelling #on the #taxonomy #topic
- On the Integration of Topic Modeling and Dictionary Learning (LL, MZ, GS, LC), pp. 625–632.
- ICML-2011-MarlinKM #bound #modelling
- Piecewise Bounds for Estimating Bernoulli-Logistic Latent Gaussian Models (BMM, MEK, KPM), pp. 633–640.
- ICML-2011-UrnerSB #predict
- Access to Unlabeled Data can Speed up Prediction Time (RU, SSS, SBD), pp. 641–648.
- ICML-2011-RoyLM #bound #polynomial #source code
- From PAC-Bayes Bounds to Quadratic Programs for Majority Votes (JFR, FL, MM), pp. 649–656.
- ICML-2011-FlachHR #classification #performance
- A Coherent Interpretation of AUC as a Measure of Aggregated Classification Performance (PAF, JHO, CFR), pp. 657–664.
- ICML-2011-FrancZS #modelling #probability
- Support Vector Machines as Probabilistic Models (VF, AZ, BS), pp. 665–672.
- ICML-2011-TamuzLBSK #adaptation #kernel #learning
- Adaptively Learning the Crowd Kernel (OT, CL, SB, OS, AK), pp. 673–680.
- ICML-2011-WellingT #learning #probability
- Bayesian Learning via Stochastic Gradient Langevin Dynamics (MW, YWT), pp. 681–688.
- ICML-2011-NgiamKKNLN #learning #multimodal
- Multimodal Deep Learning (JN, AK, MK, JN, HL, AYN), pp. 689–696.
- ICML-2011-KimS #kernel #on the #robust
- On the Robustness of Kernel Density M-Estimators (JK, CDS), pp. 697–704.
- ICML-2011-RaiD #process
- Beam Search based MAP Estimates for the Indian Buffet Process (PR, HDI), pp. 705–712.
- ICML-2011-DekelGSX #distributed #online #predict
- Optimal Distributed Online Prediction (OD, RGB, OS, LX), pp. 713–720.
- ICML-2011-KnowlesGG #algorithm #message passing
- Message Passing Algorithms for the Dirichlet Diffusion Tree (DAK, JVG, ZG), pp. 721–728.
- ICML-2011-PengHMU #set
- Convex Max-Product over Compact Sets for Protein Folding (JP, TH, DAM, RU), pp. 729–736.
- ICML-2011-ChakrabortyS #learning
- Structure Learning in Ergodic Factored MDPs without Knowledge of the Transition Function’s In-Degree (DC, PS), pp. 737–744.
- ICML-2011-HockingVBJ #algorithm #clustering #named #using
- Clusterpath: an Algorithm for Clustering using Convex Fusion Penalties (TH, JPV, FRB, AJ), pp. 745–752.
- ICML-2011-ShiehHA
- Tree preserving embedding (AS, TH, EA), pp. 753–760.
- ICML-2011-AroraGKF #clustering #matrix
- Clustering by Left-Stochastic Matrix Factorization (RA, MRG, AK, MF), pp. 761–768.
- ICML-2011-LiuLC #infinity #policy #representation
- The Infinite Regionalized Policy Representation (ML, XL, LC), pp. 769–776.
- ICML-2011-WickRBCM #graph #named
- SampleRank: Training Factor Graphs with Atomic Gradients (MLW, KR, KB, AC, AM), pp. 777–784.
- ICML-2011-ZhangDC #infinity
- Tree-Structured Infinite Sparse Factor Model (XZ, DBD, LC), pp. 785–792.
- ICML-2011-VattaniCG #personalisation #rank
- Preserving Personalized Pagerank in Subgraphs (AV, DC, MG), pp. 793–800.
- ICML-2011-XiaoZW #classification #orthogonal
- Hierarchical Classification via Orthogonal Transfer (LX, DZ, MW), pp. 801–808.
- ICML-2011-NickelTK #learning #multi
- A Three-Way Model for Collective Learning on Multi-Relational Data (MN, VT, HPK), pp. 809–816.
- ICML-2011-Neumann #policy
- Variational Inference for Policy Search in changing situations (GN), pp. 817–824.
- ICML-2011-BuffoniCGU #learning #standard
- Learning Scoring Functions with Order-Preserving Losses and Standardized Supervision (DB, CC, PG, NU), pp. 825–832.
- ICML-2011-RifaiVMGB #feature model
- Contractive Auto-Encoders: Explicit Invariance During Feature Extraction (SR, PV, XM, XG, YB), pp. 833–840.
- ICML-2011-Lazaro-GredillaT #process
- Variational Heteroscedastic Gaussian Process Regression (MLG, MKT), pp. 841–848.
- ICML-2011-LiuI #bound #difference #using
- Bounding the Partition Function using Holder’s Inequality (QL, ATI), pp. 849–856.
- ICML-2011-VuAHS #modelling #network
- Dynamic Egocentric Models for Citation Networks (DQV, AUA, DRH, PS), pp. 857–864.
- ICML-2011-SmallWBT #learning
- The Constrained Weight Space SVM: Learning with Ranked Features (KS, BCW, CEB, TAT), pp. 865–872.
- ICML-2011-ChenXCS #matrix #robust
- Robust Matrix Completion and Corrupted Columns (YC, HX, CC, SS), pp. 873–880.
- ICML-2011-GeramifardDRRH #dependence #online
- Online Discovery of Feature Dependencies (AG, FD, JR, NR, JPH), pp. 881–888.
- ICML-2011-PaisleyCB #process
- Variational Inference for Stick-Breaking Beta Process Priors (JWP, LC, DMB), pp. 889–896.
- ICML-2011-BabesMLS #learning #multi
- Apprenticeship Learning About Multiple Intentions (MB, VNM, KS, MLL), pp. 897–904.
- ICML-2011-Sohl-DicksteinBD #learning #probability
- Minimum Probability Flow Learning (JSD, PB, MRD), pp. 905–912.
- ICML-2011-DoshiWTR #infinity #network
- Infinite Dynamic Bayesian Networks (FD, DW, JBT, NR), pp. 913–920.
- ICML-2011-CoatesN #encoding
- The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization (AC, AYN), pp. 921–928.
- ICML-2011-Cuturi #kernel #performance
- Fast Global Alignment Kernels (MC), pp. 929–936.
- ICML-2011-BazzaniFLMT #learning #network #policy #recognition #video
- Learning attentional policies for tracking and recognition in video with deep networks (LB, NdF, HL, VM, JAT), pp. 937–944.
- ICML-2011-DauphinGB #learning #re-engineering #scalability
- Large-Scale Learning of Embeddings with Reconstruction Sampling (YD, XG, YB), pp. 945–952.
- ICML-2011-ChenWC #automation #composition
- Automatic Feature Decomposition for Single View Co-training (MC, KQW, YC), pp. 953–960.
- ICML-2011-ShinCK #kernel
- Mapping kernels for trees (KS, MC, TK), pp. 961–968.
- ICML-2011-MachartPARG #kernel #learning #probability #rank
- Stochastic Low-Rank Kernel Learning for Regression (PM, TP, SA, LR, HG), pp. 969–976.
- ICML-2011-NaganoKA
- Size-constrained Submodular Minimization through Minimum Norm Base (KN, YK, KA), pp. 977–984.
- ICML-2011-LadickyT #linear
- Locally Linear Support Vector Machines (LL, PHST), pp. 985–992.
- ICML-2011-KadriRPDR #functional #kernel
- Functional Regularized Least Squares Classication with Operator-valued Kernels (HK, AR, PP, ED, AR), pp. 993–1000.
- ICML-2011-JalaliCSX #clustering #graph #optimisation
- Clustering Partially Observed Graphs via Convex Optimization (AJ, YC, SS, HX), pp. 1001–1008.
- ICML-2011-YangR #learning #on the #using #visual notation
- On the Use of Variational Inference for Learning Discrete Graphical Model (EY, PDR), pp. 1009–1016.
- ICML-2011-SutskeverMH #generative #network
- Generating Text with Recurrent Neural Networks (IS, JM, GEH), pp. 1017–1024.
- ICML-2011-AgovicBC #matrix #probability
- Probabilistic Matrix Addition (AA, AB, SC), pp. 1025–1032.
- ICML-2011-MartensS #learning #network #optimisation
- Learning Recurrent Neural Networks with Hessian-Free Optimization (JM, IS), pp. 1033–1040.
- ICML-2011-EisensteinAX #generative #modelling
- Sparse Additive Generative Models of Text (JE, AA, EPX), pp. 1041–1048.
- ICML-2011-GabillonLGS #classification #policy
- Classification-based Policy Iteration with a Critic (VG, AL, MG, BS), pp. 1049–1056.
- ICML-2011-DasK #algorithm #approximate #set #taxonomy
- Submodular meets Spectral: Greedy Algorithms for Subset Selection, Sparse Approximation and Dictionary Selection (AD, DK), pp. 1057–1064.
- ICML-2011-ParikhSX #algorithm #modelling #visual notation
- A Spectral Algorithm for Latent Tree Graphical Models (APP, LS, EPX), pp. 1065–1072.
- ICML-2011-GuanDJ #feature model #probability
- A Unified Probabilistic Model for Global and Local Unsupervised Feature Selection (YG, JGD, MIJ), pp. 1073–1080.
- ICML-2011-LiZ #towards
- Towards Making Unlabeled Data Never Hurt (YFL, ZHZ), pp. 1081–1088.
- ICML-2011-SaxeKCBSN #learning #on the #random
- On Random Weights and Unsupervised Feature Learning (AMS, PWK, ZC, MB, BS, AYN), pp. 1089–1096.
- ICML-2011-DudikLL #evaluation #learning #policy #robust
- Doubly Robust Policy Evaluation and Learning (MD, JL, LL), pp. 1097–1104.
- ICML-2011-NgiamCKN #energy #learning #modelling
- Learning Deep Energy Models (JN, ZC, PWK, AYN), pp. 1105–1112.
- ICML-2011-KotlowskiDH #ranking
- Bipartite Ranking through Minimization of Univariate Loss (WK, KD, EH), pp. 1113–1120.
- ICML-2011-LeeW #identification #learning #online #probability
- Manifold Identification of Dual Averaging Methods for Regularized Stochastic Online Learning (SL, SJW), pp. 1121–1128.
- ICML-2011-AgarwalNW #composition #matrix
- Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions (AA, SN, MJW), pp. 1129–1136.
- ICML-2011-VainsencherDM #estimation #online
- Bundle Selling by Online Estimation of Valuation Functions (DV, OD, SM), pp. 1137–1144.
- ICML-2011-CourvilleBB #image #modelling
- Unsupervised Models of Images by Spikeand-Slab RBMs (ACC, JB, YB), pp. 1145–1152.
- ICML-2011-KamisettyXL #approximate #correlation #using
- Approximating Correlated Equilibria using Relaxations on the Marginal Polytope (HK, EPX, CJL), pp. 1153–1160.
- ICML-2011-YanRFD #learning
- Active Learning from Crowds (YY, RR, GF, JGD), pp. 1161–1168.
- ICML-2011-WaughZB #equilibrium #problem
- Computational Rationalization: The Inverse Equilibrium Problem (KW, BDZ, DB), pp. 1169–1176.
- ICML-2011-GhavamzadehLMH #analysis
- Finite-Sample Analysis of Lasso-TD (MG, AL, RM, MWH), pp. 1177–1184.
- ICML-2011-PazisP #scalability #set
- Generalized Value Functions for Large Action Sets (JP, RP), pp. 1185–1192.
- ICML-2011-KuleszaT #named #process
- k-DPPs: Fixed-Size Determinantal Point Processes (AK, BT), pp. 1193–1200.
- ICML-2011-SwerskyRBMF #energy #modelling #on the
- On Autoencoders and Score Matching for Energy Based Models (KS, MR, DB, BMM, NdF), pp. 1201–1208.
- ICML-2011-GrubbB #algorithm #optimisation
- Generalized Boosting Algorithms for Convex Optimization (AG, DB), pp. 1209–1216.
40 ×#learning
15 ×#kernel
14 ×#modelling
14 ×#multi
10 ×#classification
10 ×#on the
10 ×#using
9 ×#algorithm
8 ×#named
8 ×#process
15 ×#kernel
14 ×#modelling
14 ×#multi
10 ×#classification
10 ×#on the
10 ×#using
9 ×#algorithm
8 ×#named
8 ×#process