Travelled to:
1 × Canada
1 × United Kingdom
4 × USA
Collaborated with:
S.Vijayakumar A.D'Souza J.Peters C.G.Atkeson J.Ting M.Kalakrishnan L.Righetti P.Pastor J.Conradt G.Tevatia
Talks about:
learn (5) regress (3) robot (3) dimension (2) bayesian (2) control (2) weight (2) space (2) high (2) increment (1)
Person: Stefan Schaal
DBLP: Schaal:Stefan
Contributed to:
Wrote 7 papers:
- ICML-2012-KalakrishnanRPS #learning #policy
- Learning Force Control Policies for Compliant Robotic Manipulation (MK, LR, PP, SS), p. 10.
- ICML-2007-PetersS #learning
- Reinforcement learning by reward-weighted regression for operational space control (JP, SS), pp. 745–750.
- ICML-2006-TingDS
- Bayesian regression with input noise for high dimensional data (JAT, AD, SS), pp. 937–944.
- ICML-2004-DSouzaVS
- The Bayesian backfitting relevance vector machine (AD, SV, SS).
- ICML-2000-ConradtTVS #learning #online
- On-line Learning for Humanoid Robot Systems (JC, GT, SV, SS), pp. 191–198.
- ICML-2000-VijayakumarS #incremental #learning #realtime
- Locally Weighted Projection Regression: Incremental Real Time Learning in High Dimensional Space (SV, SS), pp. 1079–1086.
- ICML-1997-AtkesonS #learning
- Robot Learning From Demonstration (CGA, SS), pp. 12–20.