Travelled to:
1 × France
1 × Italy
1 × Switzerland
1 × USA
2 × China
Collaborated with:
L.Schmidt-Thieme ∅ Z.Gantner C.Freudenthaler T.Silbermann I.Bayer L.Drumond L.B.Marinho A.Nanopoulos
Talks about:
recommend (5) factor (5) system (3) tensor (2) machin (2) scale (2) base (2) incomplet (1) knowledg (1) regular (1)
Person: Steffen Rendle
DBLP: Rendle:Steffen
Contributed to:
Wrote 7 papers:
- RecSys-2013-SilbermannBR #recommendation
- Sample selection for MCMC-based recommender systems (TS, IB, SR), pp. 403–406.
- VLDB-2013-Rendle #relational #scalability
- Scaling Factorization Machines to Relational Data (SR), pp. 337–348.
- SAC-2012-DrumondRS #information management #knowledge base #predict #rdf
- Predicting RDF triples in incomplete knowledge bases with tensor factorization (LD, SR, LST), pp. 326–331.
- RecSys-2011-GantnerRFS #library #named #recommendation
- MyMediaLite: a free recommender system library (ZG, SR, CF, LST), pp. 305–308.
- SIGIR-2011-RendleGFS #performance #recommendation
- Fast context-aware recommendations with factorization machines (SR, ZG, CF, LST), pp. 635–644.
- KDD-2009-RendleMNS #learning #ranking #recommendation
- Learning optimal ranking with tensor factorization for tag recommendation (SR, LBM, AN, LST), pp. 727–736.
- RecSys-2008-RendleS #kernel #matrix #modelling #recommendation #scalability
- Online-updating regularized kernel matrix factorization models for large-scale recommender systems (SR, LST), pp. 251–258.