Qiang Yang, Irwin King, Qing Li, Pearl Pu, George Karypis
Proceedings of the Seventh Conference on Recommender Systems
RecSys, 2013.
@proceedings{RecSys-2013, acmid = "2507157", address = "Hong Kong, China", editor = "Qiang Yang and Irwin King and Qing Li and Pearl Pu and George Karypis", isbn = "978-1-4503-2409-0", publisher = "{ACM}", title = "{Proceedings of the Seventh Conference on Recommender Systems}", year = 2013, }
Contents (92 items)
- RecSys-2013-TangGHL #overview #predict #rating
- Context-aware review helpfulness rating prediction (JT, HG, XH, HL), pp. 1–8.
- RecSys-2013-HaririMB #recommendation
- Query-driven context aware recommendation (NH, BM, RDB), pp. 9–16.
- RecSys-2013-KaminskasRS #hybrid #music #recommendation #using
- Location-aware music recommendation using auto-tagging and hybrid matching (MK, FR, MS), pp. 17–24.
- RecSys-2013-HuE #modelling #online #recommendation #social #social media #topic
- Spatial topic modeling in online social media for location recommendation (BH, ME), pp. 25–32.
- RecSys-2013-VahabiALBL #orthogonal #query #recommendation
- Orthogonal query recommendation (HV, MA, DL, RABY, ALO), pp. 33–40.
- RecSys-2013-PuF #comprehension #matrix #recommendation #relational
- Understanding and improving relational matrix factorization in recommender systems (LP, BF), pp. 41–48.
- RecSys-2013-KoyejoAG #collaboration #matrix
- Retargeted matrix factorization for collaborative filtering (OK, SA, JG), pp. 49–56.
- RecSys-2013-Shi #approach #graph #recommendation #similarity
- Trading-off among accuracy, similarity, diversity, and long-tail: a graph-based recommendation approach (LS), pp. 57–64.
- RecSys-2013-WestonWY #multi
- Nonlinear latent factorization by embedding multiple user interests (JW, RJW, HY), pp. 65–68.
- RecSys-2013-PanCCY #personalisation #recommendation #social
- Diffusion-aware personalized social update recommendation (YP, FC, KC, YY), pp. 69–76.
- RecSys-2013-ZhangP #recommendation #social #social media
- Recommending branded products from social media (YZ, MP), pp. 77–84.
- RecSys-2013-OstuniNSM #feedback #linked data #open data #recommendation
- Top-N recommendations from implicit feedback leveraging linked open data (VCO, TDN, EDS, RM), pp. 85–92.
- RecSys-2013-GaoTHL #network #recommendation #social
- Exploring temporal effects for location recommendation on location-based social networks (HG, JT, XH, HL), pp. 93–100.
- RecSys-2013-SaayaRSS #challenge #recommendation #web
- The curated web: a recommendation challenge (ZS, RR, MS, BS), pp. 101–104.
- RecSys-2013-GarcinDF #personalisation #recommendation
- Personalized news recommendation with context trees (FG, CD, BF), pp. 105–112.
- RecSys-2013-PeraN #personalisation #recommendation #what
- What to read next?: making personalized book recommendations for K-12 users (MSP, YKN), pp. 113–120.
- RecSys-2013-AzariaHKEWN #recommendation
- Movie recommender system for profit maximization (AA, AH, SK, AE, OW, IN), pp. 121–128.
- RecSys-2013-KoenigsteinP #embedded #feature model #matrix #recommendation
- Xbox movies recommendations: variational bayes matrix factorization with embedded feature selection (NK, UP), pp. 129–136.
- RecSys-2013-WuLCHLCH #online #personalisation #recommendation
- Personalized next-song recommendation in online karaokes (XW, QL, EC, LH, JL, CC, GH), pp. 137–140.
- RecSys-2013-BelemSAG #recommendation #topic
- Topic diversity in tag recommendation (FB, RLTS, JMA, MAG), pp. 141–148.
- RecSys-2013-NguyenKWHEWR #experience #rating #recommendation #user interface
- Rating support interfaces to improve user experience and recommender accuracy (TTN, DK, TYW, PMH, MDE, MCW, JR), pp. 149–156.
- RecSys-2013-GraschFR #interactive #named #recommendation #speech #towards
- ReComment: towards critiquing-based recommendation with speech interaction (PG, AF, FR), pp. 157–164.
- RecSys-2013-McAuleyL #comprehension #overview #rating #topic
- Hidden factors and hidden topics: understanding rating dimensions with review text (JJM, JL), pp. 165–172.
- RecSys-2013-ZhangSKH #artificial reality #recommendation #using
- Improving augmented reality using recommender systems (ZZ, SS, SRK, PH), pp. 173–176.
- RecSys-2013-MouraoRKM #hybrid #recommendation
- Exploiting non-content preference attributes through hybrid recommendation method (FM, LCdR, JAK, WMJ), pp. 177–184.
- RecSys-2013-KhroufT #hybrid #linked data #open data #recommendation #using
- Hybrid event recommendation using linked data and user diversity (HK, RT), pp. 185–192.
- RecSys-2013-SharmaY #community #learning #recommendation
- Pairwise learning in recommendation: experiments with community recommendation on linkedin (AS, BY), pp. 193–200.
- RecSys-2013-NatarajanSD #collaboration
- Which app will you use next?: collaborative filtering with interactional context (NN, DS, ISD), pp. 201–208.
- RecSys-2013-PessemierDM13a #recommendation
- A food recommender for patients in a care facility (TDP, SD, LM), pp. 209–212.
- RecSys-2013-Steck #evaluation #predict #ranking #recommendation
- Evaluation of recommendations: rating-prediction and ranking (HS), pp. 213–220.
- RecSys-2013-BabasCT #personalisation #recommendation #what
- You are what you consume: a bayesian method for personalized recommendations (KB, GC, ET), pp. 221–228.
- RecSys-2013-ZhangWCZ #personalisation #perspective #risk management
- To personalize or not: a risk management perspective (WZ, JW, BC, XZ), pp. 229–236.
- RecSys-2013-WangHZL #collaboration #multi #on the fly #online #recommendation
- Online multi-task collaborative filtering for on-the-fly recommender systems (JW, SCHH, PZ, ZL), pp. 237–244.
- RecSys-2013-WestonYW #learning #rank #recommendation #statistics
- Learning to rank recommendations with the k-order statistic loss (JW, HY, RJW), pp. 245–248.
- RecSys-2013-ZhuangCJL #matrix #memory management #parallel #performance
- A fast parallel SGD for matrix factorization in shared memory systems (YZ, WSC, YCJ, CJL), pp. 249–256.
- RecSys-2013-Kyrola #named #random
- DrunkardMob: billions of random walks on just a PC (AK), pp. 257–264.
- RecSys-2013-HammarKN #e-commerce #recommendation #using
- Using maximum coverage to optimize recommendation systems in e-commerce (MH, RK, BJN), pp. 265–272.
- RecSys-2013-Aiolli #dataset #performance #recommendation #scalability
- Efficient top-n recommendation for very large scale binary rated datasets (FA), pp. 273–280.
- RecSys-2013-SchelterBSAM #distributed #matrix #pipes and filters #using
- Distributed matrix factorization with mapreduce using a series of broadcast-joins (SS, CB, MS, AA, VM), pp. 281–284.
- RecSys-2013-XuBATMK #recommendation
- Catch-up TV recommendations: show old favourites and find new ones (MX, SB, SA, ST, AM, IK), pp. 285–294.
- RecSys-2013-LiuAYB #generative #using
- Generating supplemental content information using virtual profiles (HL, MSA, BY, AB), pp. 295–302.
- RecSys-2013-AlanaziB #markov #modelling #recommendation #using
- A people-to-people content-based reciprocal recommender using hidden markov models (AA, MB), pp. 303–306.
- RecSys-2013-BlancoR #feedback #recommendation
- Acquiring user profiles from implicit feedback in a conversational recommender system (HB, FR), pp. 307–310.
- RecSys-2013-AzariaKR #multi #problem
- A system for advice provision in multiple prospectselection problems (AA, SK, AR), pp. 311–314.
- RecSys-2013-MirbakhshL #clustering #collaboration
- Clustering-based factorized collaborative filtering (NM, CXL), pp. 315–318.
- RecSys-2013-TiroshiBKCK #network #predict #social
- Cross social networks interests predictions based ongraph features (AT, SB, MAK, TC, TK), pp. 319–322.
- RecSys-2013-ChowJKS #data analysis #difference #recommendation
- Differential data analysis for recommender systems (RC, HJ, BPK, GS), pp. 323–326.
- RecSys-2013-ZhengI #effectiveness
- Effectiveness of the data generated on different time in latent factor model (QZ, HHSI), pp. 327–330.
- RecSys-2013-HuY #learning #process #recommendation
- Interview process learning for top-n recommendation (FH, YY), pp. 331–334.
- RecSys-2013-TaramigkouBCAM #music
- Escape the bubble: guided exploration of music preferences for serendipity and novelty (MT, EB, KC, DA, GM), pp. 335–338.
- RecSys-2013-CremonesiGQ #recommendation
- Evaluating top-n recommendations “when the best are gone” (PC, FG, MQ), pp. 339–342.
- RecSys-2013-DoerfelJ #analysis #evaluation #recommendation
- An analysis of tag-recommender evaluation procedures (SD, RJ), pp. 343–346.
- RecSys-2013-YuRSSKGNH #feedback #network #recommendation
- Recommendation in heterogeneous information networks with implicit user feedback (XY, XR, YS, BS, UK, QG, BN, JH), pp. 347–350.
- RecSys-2013-AdamopoulosT #collaboration #predict #recommendation #using
- Recommendation opportunities: improving item prediction using weighted percentile methods in collaborative filtering systems (PA, AT), pp. 351–354.
- RecSys-2013-GaoHBLLZ #predict #social #social media
- Improving user profile with personality traits predicted from social media content (RG, BH, SB, LL, AL, TZ), pp. 355–358.
- RecSys-2013-BlankRS #graph #keyword #recommendation
- Leveraging the citation graph to recommend keywords (IB, LR, GS), pp. 359–362.
- RecSys-2013-CodinaRC #modelling #semantics
- Local context modeling with semantic pre-filtering (VC, FR, LC), pp. 363–366.
- RecSys-2013-BugaychenkoD #network #personalisation #recommendation #social
- Musical recommendations and personalization in a social network (DB, AD), pp. 367–370.
- RecSys-2013-DzyaburaT #how #recommendation
- Not by search alone: how recommendations complement search results (DD, AT), pp. 371–374.
- RecSys-2013-AharonABLABLRS #named #online #persistent #recommendation #set
- OFF-set: one-pass factorization of feature sets for online recommendation in persistent cold start settings (MA, NA, EB, RL, RA, TB, LL, RR, OS), pp. 375–378.
- RecSys-2013-Hurley #personalisation #ranking
- Personalised ranking with diversity (NJH), pp. 379–382.
- RecSys-2013-GuoZTY #e-commerce #recommendation
- Prior ratings: a new information source for recommender systems in e-commerce (GG, JZ, DT, NYS), pp. 383–386.
- RecSys-2013-BelloginPC #collaboration #probability
- Probabilistic collaborative filtering with negative cross entropy (AB, JP, PC), pp. 387–390.
- RecSys-2013-SavirBS #recommendation
- Recommending improved configurations for complex objects with an application in travel planning (AS, RIB, GS), pp. 391–394.
- RecSys-2013-KrestelS #recommendation #topic
- Recommending patents based on latent topics (RK, PS), pp. 395–398.
- RecSys-2013-TianJ #graph #recommendation #using
- Recommending scientific articles using bi-relational graph-based iterative RWR (GT, LJ), pp. 399–402.
- RecSys-2013-SilbermannBR #recommendation
- Sample selection for MCMC-based recommender systems (TS, IB, SR), pp. 403–406.
- RecSys-2013-RonenKZN #collaboration #recommendation
- Selecting content-based features for collaborative filtering recommenders (RR, NK, EZ, NN), pp. 407–410.
- RecSys-2013-DongOSMS #recommendation #sentiment
- Sentimental product recommendation (RD, MPO, MS, KM, BS), pp. 411–414.
- RecSys-2013-SuYCY #personalisation #ranking #recommendation
- Set-oriented personalized ranking for diversified top-n recommendation (RS, LY, KC, YY), pp. 415–418.
- RecSys-2013-KoenigsteinK #recommendation #scalability #towards
- Towards scalable and accurate item-oriented recommendations (NK, YK), pp. 419–422.
- RecSys-2013-OstrikovRS #collaboration #metadata #using
- Using geospatial metadata to boost collaborative filtering (AO, LR, BS), pp. 423–426.
- RecSys-2013-WilsonS #collaboration #recommendation
- When power users attack: assessing impacts in collaborative recommender systems (DCW, CES), pp. 427–430.
- RecSys-2013-ShiKBLH #multi #named #optimisation #rank
- xCLiMF: optimizing expected reciprocal rank for data with multiple levels of relevance (YS, AK, LB, ML, AH), pp. 431–434.
- RecSys-2013-BartelD #evolution #network #social
- Evolving friend lists in social networks (JWB, PD), pp. 435–438.
- RecSys-2013-LacerdaVZ #interactive #recommendation
- Exploratory and interactive daily deals recommendation (AL, AV, NZ), pp. 439–442.
- RecSys-2013-Dooms #generative #hybrid #personalisation #recommendation
- Dynamic generation of personalized hybrid recommender systems (SD), pp. 443–446.
- RecSys-2013-Seminario #collaboration #recommendation #robust
- Accuracy and robustness impacts of power user attacks on collaborative recommender systems (CES), pp. 447–450.
- RecSys-2013-Guo #recommendation #similarity #trust
- Integrating trust and similarity to ameliorate the data sparsity and cold start for recommender systems (GG), pp. 451–454.
- RecSys-2013-TaghaviBS #recommendation
- Agent-based computational investing recommender system (MT, KB, ES), pp. 455–458.
- RecSys-2013-Adamopoulos #predict #rating #recommendation
- Beyond rating prediction accuracy: on new perspectives in recommender systems (PA), pp. 459–462.
- RecSys-2013-Ben-Shimon #algorithm #recommendation
- Anytime algorithms for top-N recommenders (DBS), pp. 463–466.
- RecSys-2013-KucharK #case study #learning #named #web #web service
- GAIN: web service for user tracking and preference learning — a smart TV use case (JK, TK), pp. 467–468.
- RecSys-2013-GarcinF #framework #personalisation #recommendation
- PEN RecSys: a personalized news recommender systems framework (FG, BF), pp. 469–470.
- RecSys-2013-AhnPLL #graph #recommendation
- A heterogeneous graph-based recommendation simulator (YA, SP, SL, SgL), pp. 471–472.
- RecSys-2013-NewellM #design #evaluation #recommendation
- Design and evaluation of a client-side recommender system (CN, LM), pp. 473–474.
- RecSys-2013-RonenKZSYH #named #recommendation
- Sage: recommender engine as a cloud service (RR, NK, EZ, MS, RY, NHW), pp. 475–476.
- RecSys-2013-BlomoEF #challenge
- RecSys challenge 2013 (JB, ME, MF), pp. 489–490.
- RecSys-2013-Ester #network #recommendation #social
- Recommendation in social networks (ME), pp. 491–492.
- RecSys-2013-KaratzoglouBS #learning #rank #recommendation
- Learning to rank for recommender systems (AK, LB, YS), pp. 493–494.
- RecSys-2013-PizzatoB #network #people #recommendation #social
- Beyond friendship: the art, science and applications of recommending people to people in social networks (LAP, AB), pp. 495–496.
- RecSys-2013-TsoukiasV #tutorial
- Tutorial on preference handling (AT, PV), pp. 497–498.
67 ×#recommendation
11 ×#personalisation
10 ×#collaboration
10 ×#social
10 ×#using
7 ×#network
6 ×#named
6 ×#predict
5 ×#learning
5 ×#matrix
11 ×#personalisation
10 ×#collaboration
10 ×#social
10 ×#using
7 ×#network
6 ×#named
6 ×#predict
5 ×#learning
5 ×#matrix