Travelled to:
1 × Australia
1 × Canada
1 × China
1 × France
1 × Germany
4 × USA
Collaborated with:
R.J.Mooney M.Bilenko A.Banerjee R.J.Bayardo J.Ghosh R.Srikant N.Wang D.Pregibon D.Sculley R.G.Malkin B.Panda J.Herbach B.Kulis I.S.Dhillon K.V.Pasupuleti C.Krumpelman K.Henderson B.Gallagher T.Eliassi-Rad H.Tong L.Akoglu D.Koutra C.Faloutsos L.Li
Talks about:
cluster (5) supervis (4) semi (4) model (2) learn (2) graph (2) mine (2) probabilist (1) constraint (1) framework (1)
Person: Sugato Basu
DBLP: Basu:Sugato
Contributed to:
Wrote 10 papers:
- KDD-2012-HendersonGETBAKFL #graph #mining #named #scalability
- RolX: structural role extraction & mining in large graphs (KH, BG, TER, HT, SB, LA, DK, CF, LL), pp. 1231–1239.
- KDD-2010-SrikantBWP #modelling
- User browsing models: relevance versus examination (RS, SB, NW, DP), pp. 223–232.
- KDD-2009-SculleyMBB #predict
- Predicting bounce rates in sponsored search advertisements (DS, RGM, SB, RJB), pp. 1325–1334.
- VLDB-2009-PandaHBB #learning #named #parallel #pipes and filters
- PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce (BP, JH, SB, RJB), pp. 1426–1437.
- ICML-2005-KulisBDM #approach #clustering #graph #kernel
- Semi-supervised graph clustering: a kernel approach (BK, SB, ISD, RJM), pp. 457–464.
- KDD-2005-BanerjeeKGBM #clustering #modelling
- Model-based overlapping clustering (AB, CK, JG, SB, RJM), pp. 532–537.
- ICML-2004-BilenkoBM #clustering #constraints #learning #metric
- Integrating constraints and metric learning in semi-supervised clustering (MB, SB, RJM).
- KDD-2004-BasuBM #clustering #framework #probability
- A probabilistic framework for semi-supervised clustering (SB, MB, RJM), pp. 59–68.
- ICML-2002-BasuBM #clustering
- Semi-supervised Clustering by Seeding (SB, AB, RJM), pp. 27–34.
- KDD-2001-BasuMPG #using
- Evaluating the novelty of text-mined rules using lexical knowledge (SB, RJM, KVP, JG), pp. 233–238.