Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter

Doheon Lee, Mario Schkolnick, Foster J. Provost, Ramakrishnan Srikant
Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining
KDD, 2001.

KER
DBLP
Scholar
Full names Links ISxN
@proceedings{KDD-2001,
	acmid         = "502512",
	address       = "San Francisco, California, USA",
	editor        = "Doheon Lee and Mario Schkolnick and Foster J. Provost and Ramakrishnan Srikant",
	isbn          = "1-58113-391-X",
	publisher     = "{ACM}",
	title         = "{Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining}",
	year          = 2001,
}

Contents (72 items)

KDD-2001-Altman #biology #challenge #information management
Challenges for knowledge discovery in biology (RBA), p. 2.
KDD-2001-Mitchell #web
Extracting targeted data from the web (TMM), p. 3.
KDD-2001-Ramakrishnan #collaboration #data mining #mining
Mass collaboration and data mining (RR), p. 4.
KDD-2001-Agrarwal #modelling #predict
Applications of generalized support vector machines to predictive modeling (NA), p. 6.
KDD-2001-Edelstein #data mining #mining #question
Data mining: are we there yet? (HE), p. 7.
KDD-2001-Kohavi #e-commerce #mining
Mining e-commerce data: the good, the bad, and the ugly (RK), pp. 8–13.
KDD-2001-Netz #data mining #database #developer #framework #mining #platform
Data mining platform for database developers (AN), p. 14.
KDD-2001-Riedl #community #recommendation
Recommender systems in commerce and community (JR), p. 15.
KDD-2001-BiFK #mining
The “DGX” distribution for mining massive, skewed data (ZB, CF, FK), pp. 17–26.
KDD-2001-BujaL #classification #data mining #mining
Data mining criteria for tree-based regression and classification (AB, YSL), pp. 27–36.
KDD-2001-CadezSM #modelling #predict #probability #profiling #transaction #visualisation
Probabilistic modeling of transaction data with applications to profiling, visualization, and prediction (IVC, PS, HM), pp. 37–46.
KDD-2001-DittrichS #algorithm #mining #named #scalability #set
GESS: a scalable similarity-join algorithm for mining large data sets in high dimensional spaces (JPD, BS), pp. 47–56.
KDD-2001-DomingosR #mining #network
Mining the network value of customers (PMD, MR), pp. 57–66.
KDD-2001-DuMouchelP #empirical #multi
Empirical bayes screening for multi-item associations (WD, DP), pp. 67–76.
KDD-2001-FungM #classification
Proximal support vector machine classifiers (GF, OLM), pp. 77–86.
KDD-2001-GarckeG #data mining #mining #using
Data mining with sparse grids using simplicial basis functions (JG, MG), pp. 87–96.
KDD-2001-HultenSD #data type #mining
Mining time-changing data streams (GH, LS, PMD), pp. 97–106.
KDD-2001-Kandogan #clustering #coordination #multi #roadmap #using #visualisation
Visualizing multi-dimensional clusters, trends, and outliers using star coordinates (EK), pp. 107–116.
KDD-2001-KeoghCP #approach #database #named #scalability
Ensemble-index: a new approach to indexing large databases (EJK, SC, MJP), pp. 117–125.
KDD-2001-KnorrNZ #robust
Robust space transformations for distance-based operations (EMK, RTN, RHZ), pp. 126–135.
KDD-2001-KramerRH #mining
Molecular feature mining in HIV data (SK, LDR, CH), pp. 136–143.
KDD-2001-LiuMY #web
Discovering unexpected information from your competitors’ web sites (BL, YM, PSY), pp. 144–153.
KDD-2001-PadmanabhanZK #personalisation #semistructured data #what
Personalization from incomplete data: what you don’t know can hurt (BP, Z(Z, SOK), pp. 154–163.
KDD-2001-PavlovS #modelling #probability #query #transaction
Probabilistic query models for transaction data (DP, PS), pp. 164–173.
KDD-2001-PennockLNG #game studies #probability #web
Extracting collective probabilistic forecasts from web games (DMP, SL, FÅN, CLG), pp. 174–183.
KDD-2001-TrainaTPF #data mining #mining #multi #named #scalability #tool support
Tri-plots: scalable tools for multidimensional data mining (AJMT, CTJ, SP, CF), pp. 184–193.
KDD-2001-YangFB #performance
Efficient discovery of error-tolerant frequent itemsets in high dimensions (CY, UMF, PSB), pp. 194–203.
KDD-2001-ZadroznyE #learning
Learning and making decisions when costs and probabilities are both unknown (BZ, CE), pp. 204–213.
KDD-2001-AdderleyM #behaviour #case study #commit #data mining #mining #modelling
Data mining case study: modeling the behavior of offenders who commit serious sexual assaults (RA, PBM), pp. 215–220.
KDD-2001-Aggarwal #clustering #effectiveness #human-computer
A human-computer cooperative system for effective high dimensional clustering (CCA), pp. 221–226.
KDD-2001-AggarwalP #concept #mining #re-engineering #semistructured data #set
Mining massively incomplete data sets by conceptual reconstruction (CCA, SP), pp. 227–232.
KDD-2001-BasuMPG #using
Evaluating the novelty of text-mined rules using lexical knowledge (SB, RJM, KVP, JG), pp. 233–238.
KDD-2001-BeygelzimerPM #category theory #dataset #performance #scalability #visualisation
Fast ordering of large categorical datasets for better visualization (AB, CSP, SM), pp. 239–244.
KDD-2001-BinghamM #image #random #reduction
Random projection in dimensionality reduction: applications to image and text data (EB, HM), pp. 245–250.
KDD-2001-CarageaCH #classification #using
Gaining insights into support vector machine pattern classifiers using projection-based tour methods (DC, DC, VH), pp. 251–256.
KDD-2001-ChenCS #adaptation #named #self
PVA: a self-adaptive personal view agent system (CCC, MCC, YSS), pp. 257–262.
KDD-2001-ChiuFCWJ #algorithm #clustering #database #robust #scalability
A robust and scalable clustering algorithm for mixed type attributes in large database environment (TC, DF, JC, YW, CJ), pp. 263–268.
KDD-2001-Dhillon #clustering #documentation #graph #using #word
Co-clustering documents and words using bipartite spectral graph partitioning (ISD), pp. 269–274.
KDD-2001-DingHZ #component #graph #web
A spectral method to separate disconnected and nearly-disconnected web graph components (CHQD, XH, HZ), pp. 275–280.
KDD-2001-HarelK #clustering #random #using
Clustering spatial data using random walks (DH, YK), pp. 281–286.
KDD-2001-IndurkhyaW #classification #problem #rule-based
Solving regression problems with rule-based ensemble classifiers (NI, SMW), pp. 287–292.
KDD-2001-JinTH #database #mining #scalability
Mining top-n local outliers in large databases (WJ, AKHT, JH), pp. 293–298.
KDD-2001-KaltonLWY #clustering #learning
Generalized clustering, supervised learning, and data assignment (AK, PL, KW, JPY), pp. 299–304.
KDD-2001-LambertP #mining #transaction
Mining a stream of transactions for customer patterns (DL, JCP), pp. 305–310.
KDD-2001-LazarevicO #algorithm #distributed
The distributed boosting algorithm (AL, ZO), pp. 311–316.
KDD-2001-LinP #induction #natural language #semantics
Induction of semantic classes from natural language text (DL, PP), pp. 317–322.
KDD-2001-LinP01a
DIRT @SBT@discovery of inference rules from text (DL, PP), pp. 323–328.
KDD-2001-LiuHM #identification
Identifying non-actionable association rules (BL, WH, YM), pp. 329–334.
KDD-2001-LiuHM01a #set
Discovering the set of fundamental rule changes (BL, WH, YM), pp. 335–340.
KDD-2001-MannilaS #sequence
Finding simple intensity descriptions from event sequence data (HM, MS), pp. 341–346.
KDD-2001-MoodySV #automation #classification
Data filtering for automatic classification of rocks from reflectance spectra (JM, RBdAeS, JV), pp. 347–352.
KDD-2001-Morimoto #database #mining #set
Mining frequent neighboring class sets in spatial databases (YM), pp. 353–358.
KDD-2001-OzaR #online
Experimental comparisons of online and batch versions of bagging and boosting (NCO, SJR), pp. 359–364.
KDD-2001-SevonTO #named
TreeDT: gene mapping by tree disequilibrium test (PS, HT, VO), pp. 365–370.
KDD-2001-ShekharLZ #algorithm #detection #graph #summary
Detecting graph-based spatial outliers: algorithms and applications (a summary of results) (SS, CTL, PZ), pp. 371–376.
KDD-2001-StreetK #algorithm #classification #scalability #streaming
A streaming ensemble algorithm (SEA) for large-scale classification (WNS, YK), pp. 377–382.
KDD-2001-Webb
Discovering associations with numeric variables (GIW), pp. 383–388.
KDD-2001-YamanishiT
Discovering outlier filtering rules from unlabeled data: combining a supervised learner with an unsupervised learner (KY, JiT), pp. 389–394.
KDD-2001-YangWY #mining #named
Infominer: mining surprising periodic patterns (JY, WW, PSY), pp. 395–400.
KDD-2001-ZhengKM #algorithm #performance
Real world performance of association rule algorithms (ZZ, RK, LM), pp. 401–406.
KDD-2001-ApteBNPTCN #modelling
Segmentation-based modeling for advanced targeted marketing (CA, EB, RN, EPDP, FT, DC, BN), pp. 408–413.
KDD-2001-BerkhinBR #analysis #interactive #web
Interactive path analysis of web site traffic (PB, JDB, DJR), pp. 414–419.
KDD-2001-DattaDBMH
Estimating business targets (PD, JD, AB, DRM, JH), pp. 420–425.
KDD-2001-Elkan #challenge #data mining #lessons learnt #mining
Magical thinking in data mining: lessons from CoIL challenge 2000 (CE), pp. 426–431.
KDD-2001-HotzGHNW #analysis #detection #industrial
REVI-MINER, a KDD-environment for deviation detection and analysis of warranty and goodwill cost statements in automotive industry (EH, UG, WH, GN, MW), pp. 432–437.
KDD-2001-HueglinV #data mining #mining
Data mining techniques to improve forecast accuracy in airline business (CH, FV), pp. 438–442.
KDD-2001-LiY #mining
Mining from open answers in questionnaire data (HL, KY), pp. 443–449.
KDD-2001-MahHL #mining #network
Funnel report mining for the MSN network (TM, HH, YL), pp. 450–455.
KDD-2001-RossetNEVI #evaluation #modelling #predict
Evaluation of prediction models for marketing campaigns (SR, EN, UE, NV, YI), pp. 456–461.
KDD-2001-SpanglerK #analysis #knowledge base #maintenance #using
Knowledge base maintenance using knowledge gap analysis (WSS, JTK), pp. 462–466.
KDD-2001-WarnerRDB #interactive #knowledge base #mining #web
Mining user session data to facilitate user interaction with a customer service knowledge base in RightNow Web (DW, JNR, SDD, BB), pp. 467–472.
KDD-2001-YangZL #mining #modelling #predict #web
Mining web logs for prediction models in WWW caching and prefetching (QY, HHZ, ITYL), pp. 473–478.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.