Travelled to:
1 × Australia
1 × Austria
1 × Brazil
1 × China
1 × France
1 × India
1 × Japan
1 × Sweden
1 × Turkey
1 × United Kingdom
2 × Germany
2 × Spain
2 × USA
3 × Canada
Collaborated with:
F.Kimura W.Ohyama M.Shi U.Pal Y.Miyake S.Tsuruoka X.Luo R.Narita N.Sharma K.Sekioka A.Yamamoto Y.Kamihira Y.Ito S.Chanda K.Franke G.Zu S.Shimizu Y.Fujisawa A.Kokawa L.S.P.Busagala S.Inoue K.Sawa
Talks about:
recognit (13) handwritten (8) charact (8) automat (6) numer (6) featur (5) text (5) imag (5) base (5) use (5)
Person: Tetsushi Wakabayashi
DBLP: Wakabayashi:Tetsushi
Contributed to:
Wrote 26 papers:
- ICPR-2014-OhyamaYWK #recognition #using
- Improving Accuracy of Printed Character Recognition Using Hexagonal Zoning of Directional Histogram Feature (WO, AY, TW, FK), pp. 2697–2702.
- ICDAR-2013-KamihiraOWK #verification
- Improvement of Japanese Signature Verification by Segmentation-Verification (YK, WO, TW, FK), pp. 379–382.
- ICDAR-2013-LuoOWK #approach #automation #classification #using
- Automatic Chinese Text Classification Using Character-Based and Word-Based Approach (XL, WO, TW, FK), pp. 329–333.
- ICPR-2012-ItoOWK #detection
- Detection of eyes by circular Hough transform and histogram of gradient (YI, WO, TW, FK), pp. 1795–1798.
- ICPR-2012-NaritaOWK #3d #case study #estimation #recognition
- A study on three dimensional rotation-free character recognition and rotation angle estimation of characters (RN, WO, TW, FK), pp. 677–680.
- ICDAR-2011-KokawaBOWK #analysis #automation #classification #fault
- An Impact of OCR Errors on Automated Classification of OCR Japanese Texts with Parts-of-Speech Analysis (AK, LSPB, WO, TW, FK), pp. 543–547.
- ICDAR-2011-LuoOWK #automation #case study #classification
- A Study on Automatic Chinese Text Classification (XL, WO, TW, FK), pp. 920–924.
- ICDAR-2011-NaritaOWK #3d #recognition
- Three Dimensional Rotation-Free Recognition of Characters (RN, WO, TW, FK), pp. 824–828.
- ICPR-2010-ChandaFPW #identification #independence
- Text Independent Writer Identification for Bengali Script (SC, KF, UP, TW), pp. 2005–2008.
- ICDAR-2009-PalWK #case study #classification #comparative #recognition #using
- Comparative Study of Devnagari Handwritten Character Recognition Using Different Feature and Classifiers (UP, TW, FK), pp. 1111–1115.
- ICDAR-2009-WakabayashiPKM #feature model #recognition
- F-ratio Based Weighted Feature Extraction for Similar Shape Character Recognition (TW, UP, FK, YM), pp. 196–200.
- ICDAR-2007-PalSWK #recognition
- Off-Line Handwritten Character Recognition of Devnagari Script (UP, NS, TW, FK), pp. 496–500.
- ICDAR-2007-PalSWK07a #recognition
- Handwritten Numeral Recognition of Six Popular Indian Scripts (UP, NS, TW, FK), pp. 749–753.
- DocEng-2003-ZuOWK #automation #classification
- Accuracy improvement of automatic text classification based on feature transformation (GZ, WO, TW, FK), pp. 118–120.
- ICDAR-2003-ShimizuOWK #image #learning #network
- Mirror Image Learning for Autoassociative Neural Networks (SS, WO, TW, FK), pp. 804–808.
- ICPR-v1-2002-OhyamaWKTS #automation #correlation
- Automatic Tracking of Local Myocardial Motion by Correlation Weighted Velocity Method (WO, TW, FK, ST, KS), pp. 711–714.
- ICPR-v2-2002-ShiWOK #case study #comparative #image #learning
- Comparative Study on Mirror Image Learning (MIL) and GLVQ (MS, TW, WO, FK), p. 248–?.
- ICPR-v3-2002-ShiWOK02a #automation #prototype #type system
- Automatic Grading Prototype System for KANJI Dictation Test (MS, TW, WO, FK), pp. 232–235.
- ICDAR-2001-ShiOWK #clustering #distance #pseudo #recognition
- Clustering with Projection Distance and Pseudo Bayes Discriminant Function for Handwritten Numeral Recognition (MS, WO, TW, FK), pp. 1007–1011.
- ICDAR-2001-WakabayashiSOK #image #learning #recognition
- Accuracy Improvement of Handwritten Numeral Recognition by Mirror Image Learning (TW, MS, WO, FK), pp. 338–343.
- MLDM-2001-ShiWOK #image #learning #recognition
- Mirror Image Learning for Handwritten Numeral Recognition (MS, TW, WO, FK), pp. 239–248.
- ICPR-v4-2000-OhyamaWKTS #automation #detection
- Automatic Left Ventricular Endocardium Detection in Echocardiograms Based on Ternary Thresholding Method (WO, TW, FK, ST, KS), pp. 4320–4323.
- ICDAR-1999-FujisawaSWK #image #recognition #using
- Handwritten Numeral Recognition using Gradient and Curvature of Gray Scale Image (YF, MS, TW, FK), pp. 277–280.
- ICPR-1998-KimuraIWTM #network #recognition #using
- Handwritten numeral recognition using autoassociative neural networks (FK, SI, TW, ST, YM), pp. 166–171.
- ICDAR-1997-SawaTWKM #automation #quality #recognition #string
- Low Quality String Recognition for Factory Automation (KS, ST, TW, FK, YM), pp. 475–478.
- ICPR-1996-KimuraWM #feature model #on the #problem
- On feature extraction for limited class problem (FK, TW, YM), pp. 191–194.