Travelled to:
1 × Brazil
1 × Canada
1 × Israel
1 × United Kingdom
2 × China
3 × USA
Collaborated with:
J.Honorio T.Hazan J.D.M.Rennie N.Srebro S.P.Singh M.I.Jordan F.Orabona A.D.Sarwate O.Meshi D.Sontag A.Globerson E.Minkov B.Charrow J.Ledlie S.J.Teller
Talks about:
posteriori (2) concentr (2) approxim (2) perturb (2) maximum (2) random (2) learn (2) loss (2) recommend (1) markovian (1)
Person: Tommi S. Jaakkola
DBLP: Jaakkola:Tommi_S=
Contributed to:
Wrote 9 papers:
- ICML-c1-2014-OrabonaHSJ #on the #random
- On Measure Concentration of Random Maximum A-Posteriori Perturbations (FO, TH, ADS, TSJ), pp. 432–440.
- ICML-c2-2014-HonorioJ #consistency #framework
- A Unified Framework for Consistency of Regularized Loss Minimizers (JH, TSJ), pp. 136–144.
- ICML-c3-2013-HonorioJ #bound #exponential #fault
- Two-Sided Exponential Concentration Bounds for Bayes Error Rate and Shannon Entropy (JH, TSJ), pp. 459–467.
- ICML-2012-HazanJ #on the #random
- On the Partition Function and Random Maximum A-Posteriori Perturbations (TH, TSJ), p. 217.
- CIKM-2010-MinkovCLTJ #collaboration #recommendation
- Collaborative future event recommendation (EM, BC, JL, SJT, TSJ), pp. 819–828.
- ICML-2010-MeshiSJG #approximate #learning
- Learning Efficiently with Approximate Inference via Dual Losses (OM, DS, TSJ, AG), pp. 783–790.
- SIGIR-2005-RennieJ #detection #using
- Using term informativeness for named entity detection (JDMR, TSJ), pp. 353–360.
- ICML-2003-SrebroJ #approximate #rank
- Weighted Low-Rank Approximations (NS, TSJ), pp. 720–727.
- ICML-1994-SinghJJ #learning #markov #process
- Learning Without State-Estimation in Partially Observable Markovian Decision Processes (SPS, TSJ, MIJ), pp. 284–292.