Travelled to:
1 × Canada
1 × China
1 × Finland
1 × Germany
1 × Israel
1 × United Kingdom
7 × USA
Collaborated with:
D.Wingate ∅ M.R.Rudary B.Wolfe M.R.James M.J.Kearns D.Precup R.S.Sutton J.Loch R.L.Lewis J.Sorg M.E.Pollack T.S.Jaakkola M.I.Jordan K.Myers M.A.Walker Y.Li I.Chaudhuri H.Yang H.V.Jagadish M.L.Littman N.K.Jong D.Pardoe P.Stone M.Feary D.Billman X.Chen A.Howes L.Sherry
Talks about:
learn (11) predict (7) state (6) represent (5) system (4) linear (4) dynam (4) reinforc (3) tempor (3) polici (3)
Person: Satinder P. Singh
DBLP: Singh:Satinder_P=
Contributed to:
Wrote 19 papers:
- HCI-AMTE-2013-FearyBCHLSS #design #evaluation #interface #safety
- Linking Context to Evaluation in the Design of Safety Critical Interfaces (MF, DB, XC, AH, RLL, LS, SPS), pp. 193–202.
- ICML-2010-SorgSL #bound
- Internal Rewards Mitigate Agent Boundedness (JS, SPS, RLL), pp. 1007–1014.
- ICML-2008-WingateS #exponential #learning #predict #product line
- Efficiently learning linear-linear exponential family predictive representations of state (DW, SPS), pp. 1176–1183.
- SIGMOD-2007-LiCYSJ #adaptation #interface #named #natural language #query #xml
- DaNaLIX: a domain-adaptive natural language interface for querying XML (YL, IC, HY, SPS, HVJ), pp. 1165–1168.
- ICML-2006-RudaryS #modelling #predict #probability
- Predictive linear-Gaussian models of controlled stochastic dynamical systems (MRR, SPS), pp. 777–784.
- ICML-2006-WingateS #kernel #linear #modelling #predict #probability
- Kernel Predictive Linear Gaussian models for nonlinear stochastic dynamical systems (DW, SPS), pp. 1017–1024.
- ICML-2006-WolfeS #predict
- Predictive state representations with options (BW, SPS), pp. 1025–1032.
- ICML-2005-WolfeJS #learning #predict
- Learning predictive state representations in dynamical systems without reset (BW, MRJ, SPS), pp. 980–987.
- ICML-2004-JamesS #learning #predict
- Learning and discovery of predictive state representations in dynamical systems with reset (MRJ, SPS).
- ICML-2004-RudarySP #adaptation #constraints #learning #reasoning
- Adaptive cognitive orthotics: combining reinforcement learning and constraint-based temporal reasoning (MRR, SPS, MEP).
- ICML-2003-SinghLJPS #learning #predict
- Learning Predictive State Representations (SPS, MLL, NKJ, DP, PS), pp. 712–719.
- ICML-2000-MyersKSW #approach #topic
- A Boosting Approach to Topic Spotting on Subdialogues (KM, MJK, SPS, MAW), pp. 655–662.
- ICML-2000-PrecupSS #evaluation #policy
- Eligibility Traces for Off-Policy Policy Evaluation (DP, RSS, SPS), pp. 759–766.
- ICML-1998-KearnsS #learning
- Near-Optimal Reinforcement Learning in Polynominal Time (MJK, SPS), pp. 260–268.
- ICML-1998-LochS #markov #policy #process #using
- Using Eligibility Traces to Find the Best Memoryless Policy in Partially Observable Markov Decision Processes (JL, SPS), pp. 323–331.
- ICML-1998-SuttonPS #learning
- Intra-Option Learning about Temporally Abstract Actions (RSS, DP, SPS), pp. 556–564.
- ICML-1994-SinghJJ #learning #markov #process
- Learning Without State-Estimation in Partially Observable Markovian Decision Processes (SPS, TSJ, MIJ), pp. 284–292.
- ML-1992-Singh #algorithm #learning #modelling #scalability
- Scaling Reinforcement Learning Algorithms by Learning Variable Temporal Resolution Models (SPS), pp. 406–415.
- ML-1991-Singh #composition #learning
- Transfer of Learning Across Compositions of Sequentail Tasks (SPS), pp. 348–352.