Travelled to:
1 × Cyprus
1 × India
1 × Sweden
1 × Turkey
11 × USA
2 × Canada
2 × China
3 × France
Collaborated with:
Y.Ding Z.Zhao Y.Jiang E.Z.Zhang B.Wu K.Tian C.Ding M.Zhou Y.Gao F.Mao Y.Zhong Hui Guan ∅ Y.Zhao M.Musuvathi T.Mytkowicz G.Yiu R.Silvera K.Kelsey C.Zhang S.Lim Yuanchao Xu Y.Solihin J.Shaw B.Meeker M.Orlovich Guoyang Chen Chunhua Liao Lin Ning S.Eisenstat E.Z.Zhang Z.Guo J.Ansel K.Veeramachaneni U.O'Reilly S.P.Amarasinghe C.Tice R.Huang M.Hertz M.Ogihara Zhen Zheng Chanyoung Oh J.Zhai Y.Yi W.Chen J.Sun Y.Wu M.Gethers W.Wang Z.Wang C.Wu P.Yew X.Yuan J.Li X.Feng Y.Guan
Talks about:
program (11) predict (5) memori (5) optim (5) input (5) base (5) framework (4) compil (4) local (4) algorithm (3)
Person: Xipeng Shen
DBLP: Shen:Xipeng
Facilitated 1 volumes:
Contributed to:
Wrote 32 papers:
- ASPLOS-2015-ZhaoS #automaton #on the fly #parallel
- On-the-Fly Principled Speculation for FSM Parallelization (ZZ, XS), pp. 619–630.
- ICML-2015-DingZSMM #consistency
- Yinyang K-Means: A Drop-In Replacement of the Classic K-Means with Consistent Speedup (YD, YZ, XS, MM, TM), pp. 579–587.
- PLDI-2015-DingAVSOA #algorithm
- Autotuning algorithmic choice for input sensitivity (YD, JA, KV, XS, UMO, SPA), pp. 379–390.
- VLDB-2015-DingSMM #algorithm #framework #named #optimisation #problem
- TOP: A Framework for Enabling Algorithmic Optimizations for Distance-Related Problems (YD, XS, MM, TM), pp. 1046–1057.
- ASE-2014-WangWWYSYLFG #concurrent #debugging #locality #memory management #using
- Localization of concurrency bugs using shared memory access pairs (WW, ZW, CW, PCY, XS, XY, JL, XF, YG), pp. 611–622.
- ASPLOS-2014-DingZZES #compilation #complexity #runtime #scheduling
- Finding the limit: examining the potential and complexity of compilation scheduling for JIT-based runtime systems (YD, MZ, ZZ, SE, XS), pp. 607–622.
- ASPLOS-2014-ZhaoWS #finite #state machine
- Challenging the “embarrassingly sequential”: parallelizing finite state machine-based computations through principled speculation (ZZ, BW, XS), pp. 543–558.
- OOPSLA-2014-ZhaoWZDSSW #automaton #predict #probability #sequence
- Call sequence prediction through probabilistic calling automata (ZZ, BW, MZ, YD, JS, XS, YW), pp. 745–762.
- OOPSLA-2014-ZhouSGY #adaptation #multi #optimisation
- Space-efficient multi-versioning for input-adaptive feedback-driven program optimizations (MZ, XS, YG, GY), pp. 763–776.
- CGO-2013-ZhouWDS #flexibility #framework #migration #named
- Profmig: A framework for flexible migration of program profiles across software versions (MZ, BW, YD, XS), p. 12.
- ECOOP-2013-WuZSGSY #fault #optimisation #statistics
- Simple Profile Rectifications Go a Long Way — Statistically Exploring and Alleviating the Effects of Sampling Errors for Program Optimizations (BW, MZ, XS, YG, RS, GY), pp. 654–678.
- PPoPP-2013-WuZZJS #algorithm #analysis #complexity #design #gpu #memory management
- Complexity analysis and algorithm design for reorganizing data to minimize non-coalesced memory accesses on GPU (BW, ZZ, EZZ, YJ, XS), pp. 57–68.
- OOPSLA-2012-WuZSJGS #behaviour #correlation #predict
- Exploiting inter-sequence correlations for program behavior prediction (BW, ZZ, XS, YJ, YG, RS), pp. 851–866.
- ASPLOS-2011-ZhangJGTS #gpu #on the fly
- On-the-fly elimination of dynamic irregularities for GPU computing (EZZ, YJ, ZG, KT, XS), pp. 369–380.
- OOPSLA-2011-TianZS #integration #optimisation #towards
- A step towards transparent integration of input-consciousness into dynamic program optimizations (KT, EZZ, XS), pp. 445–462.
- CC-2010-JiangZTS #analysis #distance #locality #multi #question #reuse
- Is Reuse Distance Applicable to Data Locality Analysis on Chip Multiprocessors? (YJ, EZZ, KT, XS), pp. 264–282.
- CGO-2010-JiangZTMGSG #behaviour #correlation #predict #statistics
- Exploiting statistical correlations for proactive prediction of program behaviors (YJ, EZZ, KT, FM, MG, XS, YG), pp. 248–256.
- OOPSLA-2010-TianJZS #optimisation #paradigm
- An input-centric paradigm for program dynamic optimizations (KT, YJ, EZZ, XS), pp. 125–139.
- PPoPP-2010-ZhangJS #matter #parallel #performance #question #source code #thread
- Does cache sharing on modern CMP matter to the performance of contemporary multithreaded programs? (EZZ, YJ, XS), pp. 203–212.
- CGO-2009-MaoS #evolution #learning #predict #virtual machine
- Cross-Input Learning and Discriminative Prediction in Evolvable Virtual Machines (FM, XS), pp. 92–101.
- PLDI-2007-DingSKTHZ #behaviour #parallel
- Software behavior oriented parallelization (CD, XS, KK, CT, RH, CZ), pp. 223–234.
- POPL-2007-ShenSMD #approximate #locality #using
- Locality approximation using time (XS, JS, BM, CD), pp. 55–61.
- ISMM-2006-ZhangKSDHO #adaptation #memory management
- Program-level adaptive memory management (CZ, KK, XS, CD, MH, MO), pp. 174–183.
- ASPLOS-2004-ShenZD #locality #predict
- Locality phase prediction (XS, YZ, CD), pp. 165–176.
- PLDI-2004-ZhongOSD #array #using
- Array regrouping and structure splitting using whole-program reference affinity (YZ, MO, XS, CD), pp. 255–266.
- CC-2018-Shen #compilation #machine learning
- Rethinking compilers in the rise of machine learning and AI (keynote) (XS), p. 1.
- ECOOP-2016-ZhaoCLS #ontology #program analysis #towards
- Towards Ontology-Based Program Analysis (YZ, GC, CL, XS), p. 25.
- OOPSLA-2017-DingS #named
- GLORE: generalized loop redundancy elimination upon LER-notation (YD, XS), p. 28.
- PLDI-2017-DingNGS #deployment #difference #reduction
- Generalizations of the theory and deployment of triangular inequality for compiler-based strength reduction (YD, LN, HG, XS), pp. 33–48.
- PLDI-2019-GuanSL #framework #named #performance
- Wootz: a compiler-based framework for fast CNN pruning via composability (HG, XS, SHL), pp. 717–730.
- ASPLOS-2019-ZhengOZSYC #framework #named #performance #pipes and filters
- HiWayLib: A Software Framework for Enabling High Performance Communications for Heterogeneous Pipeline Computations (ZZ, CO, JZ, XS, YY, WC), pp. 153–166.
- ASPLOS-2020-XuSS #memory management #named #performance #persistent #reduction #security
- MERR: Improving Security of Persistent Memory Objects via Efficient Memory Exposure Reduction and Randomization (YX, YS, XS), pp. 987–1000.