BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Used together with:
learn (4)
method (3)
optim (2)
use (2)
base (2)

Stem ellipsoid$ (all stems)

16 papers:

CAVCAV-2015-OulamaraV #abstract interpretation
Abstract Interpretation with Higher-Dimensional Ellipsoids and Conic Extrapolation (MO, AJV), pp. 415–430.
ICMLICML-c2-2013-KrummenacherOB #learning #multi
Ellipsoidal Multiple Instance Learning (GK, CSO, JMB), pp. 73–81.
ICPRICPR-2012-JungN #modelling #refinement
Model-based feature refinement by ellipsoidal face tracking (SUJ, MSN), pp. 1209–1212.
Direct least square fitting of ellipsoids (XY, LY, JK, YH, SG, HZ), pp. 3228–3231.
CIKMCIKM-2011-WattanakitrungrojL #clustering #data type #streaming
Memory-less unsupervised clustering for data streaming by versatile ellipsoidal function (NW, CL), pp. 967–972.
STOCSTOC-2010-CardinalFJJM #algorithm #sorting
Sorting under partial information (without the ellipsoid algorithm) (JC, SF, GJ, RMJ, JIM), pp. 359–368.
ICMLICML-2009-YangJY #learning #online
Online learning by ellipsoid method (LY, RJ, JY), pp. 1153–1160.
New RHT-Based Ellipsoid Recovery Method (CKC, TSN), pp. 622–625.
DACDAC-2005-PengL #named #performance #power management #using
Freeze: engineering a fast repeater insertion solver for power minimization using the ellipsoid method (YP, XL), pp. 813–818.
DACDAC-2005-XuHLNBP #design #named #nondeterminism #optimisation #robust
OPERA: optimization with ellipsoidal uncertainty for robust analog IC design (YX, KLH, XL, IN, SPB, LTP), pp. 632–637.
ICPRICPR-v1-2004-GokcenJD #bound #learning
Comparing Optimal Bounding Ellipsoid and Support Vector Machine Active Learning (IG, DJ, JRD), pp. 172–175.
ICPRICPR-v3-2002-SuriLSL #3d #automation
Automatic Local Effect of Window/Level on 3-D Scale-Space Ellipsoidal Filtering on Run-Off-Arteries from White Blood Magnetic Resonanc Angiography (JSS, KL, SS, SL), pp. 899–902.
VLDBVLDB-2001-SakuraiYKU #adaptation #query #similarity #using
Similarity Search for Adaptive Ellipsoid Queries Using Spatial Transformation (YS, MY, RK, SU), pp. 231–240.
ICPRICPR-1996-KositskyU #learning
Learning class regions by the union of ellipsoids (MK, SU), pp. 750–757.
ICPRICPR-1996-MaL #re-engineering
Ellipsoid reconstruction from three perspective views (SM, LL), pp. 344–348.
Minimum Spanning Ellipsoids (MJP), pp. 108–116.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.