BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Used together with:
learn (4)
method (3)
optim (2)
use (2)
base (2)

Stem ellipsoid$ (all stems)

16 papers:

CAVCAV-2015-OulamaraV #abstract interpretation
Abstract Interpretation with Higher-Dimensional Ellipsoids and Conic Extrapolation (MO, AJV), pp. 415–430.
ICMLICML-c2-2013-KrummenacherOB #learning #multi
Ellipsoidal Multiple Instance Learning (GK, CSO, JMB), pp. 73–81.
ICPRICPR-2012-JungN #modelling #refinement
Model-based feature refinement by ellipsoidal face tracking (SUJ, MSN), pp. 1209–1212.
ICPRICPR-2012-YingYKHGZ
Direct least square fitting of ellipsoids (XY, LY, JK, YH, SG, HZ), pp. 3228–3231.
CIKMCIKM-2011-WattanakitrungrojL #clustering #data type #streaming
Memory-less unsupervised clustering for data streaming by versatile ellipsoidal function (NW, CL), pp. 967–972.
STOCSTOC-2010-CardinalFJJM #algorithm #sorting
Sorting under partial information (without the ellipsoid algorithm) (JC, SF, GJ, RMJ, JIM), pp. 359–368.
ICMLICML-2009-YangJY #learning #online
Online learning by ellipsoid method (LY, RJ, JY), pp. 1153–1160.
ICPRICPR-v1-2006-CaoN
New RHT-Based Ellipsoid Recovery Method (CKC, TSN), pp. 622–625.
DACDAC-2005-PengL #named #performance #power management #using
Freeze: engineering a fast repeater insertion solver for power minimization using the ellipsoid method (YP, XL), pp. 813–818.
DACDAC-2005-XuHLNBP #design #named #nondeterminism #optimisation #robust
OPERA: optimization with ellipsoidal uncertainty for robust analog IC design (YX, KLH, XL, IN, SPB, LTP), pp. 632–637.
ICPRICPR-v1-2004-GokcenJD #bound #learning
Comparing Optimal Bounding Ellipsoid and Support Vector Machine Active Learning (IG, DJ, JRD), pp. 172–175.
ICPRICPR-v3-2002-SuriLSL #3d #automation
Automatic Local Effect of Window/Level on 3-D Scale-Space Ellipsoidal Filtering on Run-Off-Arteries from White Blood Magnetic Resonanc Angiography (JSS, KL, SS, SL), pp. 899–902.
VLDBVLDB-2001-SakuraiYKU #adaptation #query #similarity #using
Similarity Search for Adaptive Ellipsoid Queries Using Spatial Transformation (YS, MY, RK, SU), pp. 231–240.
ICPRICPR-1996-KositskyU #learning
Learning class regions by the union of ellipsoids (MK, SU), pp. 750–757.
ICPRICPR-1996-MaL #re-engineering
Ellipsoid reconstruction from three perspective views (SM, LL), pp. 344–348.
STOCSTOC-1984-Post
Minimum Spanning Ellipsoids (MJP), pp. 108–116.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.