15 papers:
- SIGMOD-2014-ElmeleegyOR #distributed #memory management #named #pipes and filters #using
- SpongeFiles: mitigating data skew in mapreduce using distributed memory (KE, CO, BR), pp. 551–562.
- SIGMOD-2014-LevinK #network #pipes and filters #social #using
- Stratified-sampling over social networks using mapreduce (RL, YK), pp. 863–874.
- HPDC-2014-El-HelwHB #clustering #manycore #named #pipes and filters
- Glasswing: accelerating mapreduce on multi-core and many-core clusters (IEH, RFHH, HEB), pp. 295–298.
- CIKM-2013-LinYM #named #pipes and filters #sql
- MRPacker: an SQL to mapreduce optimizer (XL, YY, SM), pp. 1157–1160.
- RecSys-2013-SchelterBSAM #distributed #matrix #pipes and filters #using
- Distributed matrix factorization with mapreduce using a series of broadcast-joins (SS, CB, MS, AA, VM), pp. 281–284.
- SIGMOD-2012-KwonBHR #named #pipes and filters
- SkewTune: mitigating skew in mapreduce applications (YK, MB, BH, JAR), pp. 25–36.
- SIGMOD-2012-SuS #pipes and filters
- Oracle in-database hadoop: when mapreduce meets RDBMS (XS, GS), pp. 779–790.
- SIGMOD-2011-Quiane-RuizPSD #pipes and filters
- RAFT at work: speeding-up mapreduce applications under task and node failures (JAQR, CP, JS, JD), pp. 1225–1228.
- KDD-2011-GhotingKPK #algorithm #data mining #implementation #machine learning #mining #named #parallel #pipes and filters #tool support
- NIMBLE: a toolkit for the implementation of parallel data mining and machine learning algorithms on mapreduce (AG, PK, EPDP, RK), pp. 334–342.
- SIGIR-2011-LeeHWHS #dataset #graph #image #learning #multi #pipes and filters #scalability #using
- Multi-layer graph-based semi-supervised learning for large-scale image datasets using mapreduce (WYL, LCH, GLW, WHH, YFS), pp. 1121–1122.
- ESEC-FSE-2011-CsallnerFL #source code #testing
- New ideas track: testing mapreduce-style programs (CC, LF, CL), pp. 504–507.
- HPDC-2011-BalkirFR #architecture #distributed #mining #pipes and filters #using
- A distributed look-up architecture for text mining applications using mapreduce (ASB, ITF, AR), pp. 279–280.
- ISMM-2011-SingerKBL #garbage collection #java #multi #pipes and filters
- Garbage collection auto-tuning for Java mapreduce on multi-cores (JS, GK, GB, ML), pp. 109–118.
- ICEIS-DISI-2009-MartinoSPV #co-evolution #database #framework #pipes and filters
- A Mapreduce Framework for Change Propagation in Geographic Databases (FDM, SS, GP, MV), pp. 31–36.
- HPDC-2009-IbrahimJCCWQ #implementation #named #pipes and filters #towards #virtual machine
- CLOUDLET: towards mapreduce implementation on virtual machines (SI, HJ, BC, HC, SW, LQ), pp. 65–66.