Travelled to:
1 × China
1 × India
1 × Italy
1 × Turkey
1 × United Kingdom
28 × USA
Collaborated with:
D.Nguyen G.Bilardi D.Prountzos M.Burtscher R.Johnson R.Manevich A.Lenharth M.Kulkarni P.Stodghill M.A.Hassaan M.Méndez-Lojo R.Jagadeesan X.Sui G.Bronevetsky D.Marques W.Li A.Rogers S.Pai R.Dathathri Gurbinder Gill Loc Hoang D.D.Nguyen R.Nasre A.Mathew G.Ramanarayanan B.Walter K.Bala L.P.Chew R.Fernandes I.Kodukula N.Ahmed D.Pearson P.Panangaden Ian Henriksen D.T.Neves T.Warnow J.L.Sobral K.S.McKinley D.S.Fussell R.Inkulu C.Cascaval R.Rugina S.A.McKee P.K.Szwed M.Schulz M.Beck M.Moudgill H.Dang Alex Brooks Nikoli Dryden M.Snir K.Yotov X.Li G.Ren M.Cibulskis G.DeJong M.J.Garzarán D.A.Padua P.Wu R.Kaleem T.Lee
Talks about:
program (12) parallel (10) graph (9) algorithm (6) depend (6) optim (6) control (4) analysi (4) applic (4) data (4)
Person: Keshav Pingali
DBLP: Pingali:Keshav
Facilitated 3 volumes:
Contributed to:
Wrote 41 papers:
- ASPLOS-2015-HassaanNP #dependence #graph
- Kinetic Dependence Graphs (MAH, DDN, KP), pp. 457–471.
- CC-2015-PingaliB #context-free grammar #parsing #visual notation
- A Graphical Model for Context-Free Grammar Parsing (KP, GB), pp. 3–27.
- PLDI-2015-PrountzosMP #automation #graph #parallel #source code
- Synthesizing parallel graph programs via automated planning (DP, RM, KP), pp. 533–544.
- ASPLOS-2014-NguyenLP #on-demand
- Deterministic galois: on-demand, portable and parameterless (DN, AL, KP), pp. 499–512.
- PPoPP-2013-NasreBP #algorithm
- Morph algorithms on GPUs (RN, MB, KP), pp. 147–156.
- PPoPP-2013-PrountzosP #algorithm #implementation
- Betweenness centrality: algorithms and implementations (DP, KP), pp. 35–46.
- SOSP-2013-NguyenLP #framework #graph #lightweight
- A lightweight infrastructure for graph analytics (DN, AL, KP), pp. 456–471.
- OOPSLA-2012-PrountzosMP #concurrent #graph #named #source code
- Elixir: a system for synthesizing concurrent graph programs (DP, RM, KP), pp. 375–394.
- PPoPP-2012-Mendez-LojoBP #analysis #gpu #implementation #points-to
- A GPU implementation of inclusion-based points-to analysis (MML, MB, KP), pp. 107–116.
- SAC-2012-NevesWSP
- Parallelizing SuperFine (DTN, TW, JLS, KP), pp. 1361–1367.
- ASPLOS-2011-NguyenP #algorithm #concurrent
- Synthesizing concurrent schedulers for irregular algorithms (DN, KP), pp. 333–344.
- PLDI-2011-KulkarniNPSP #commutative
- Exploiting the commutativity lattice (MK, DN, DP, XS, KP), pp. 542–555.
- PLDI-2011-PingaliNKBHKLLMMPS #algorithm #parallel
- The tao of parallelism in algorithms (KP, DN, MK, MB, MAH, RK, THL, AL, RM, MML, DP, XS), pp. 12–25.
- POPL-2011-PrountzosMPM #analysis #graph #optimisation #parallel #source code
- A shape analysis for optimizing parallel graph programs (DP, RM, KP, KSM), pp. 159–172.
- PPoPP-2011-HassaanBP #algorithm #comparison #order #parallel
- Ordered vs. unordered: a comparison of parallelism and work-efficiency in irregular algorithms (MAH, MB, KP), pp. 3–12.
- OOPSLA-2010-Mendez-LojoMP #analysis #parallel #points-to
- Parallel inclusion-based points-to analysis (MML, AM, KP), pp. 428–443.
- PPoPP-2010-Mendez-LojoNPSHKBP #optimisation #source code
- Structure-driven optimizations for amorphous data-parallel programs (MML, DN, DP, XS, MAH, MK, MB, KP), pp. 3–14.
- PPoPP-2009-KulkarniBIPC #how #parallel #question
- How much parallelism is there in irregular applications? (MK, MB, RI, KP, CC), pp. 3–14.
- ASPLOS-2008-KulkarniPRWBC #clustering #parallel
- Optimistic parallelism benefits from data partitioning (MK, KP, GR, BW, KB, LPC), pp. 233–243.
- PPoPP-2008-BronevetskyMPRM #incremental
- Compiler-enhanced incremental checkpointing for OpenMP applications (GB, DM, KP, RR, SAM), pp. 275–276.
- PLDI-2007-KulkarniPWRBC #abstraction #parallel
- Optimistic parallelism requires abstractions (MK, KP, BW, GR, KB, LPC), pp. 211–222.
- PPoPP-2006-FernandesPS #mobile #source code
- Mobile MPI programs in computational grids (RF, KP, PS), pp. 22–31.
- ASPLOS-2004-BronevetskyMPSS #memory management #source code
- Application-level checkpointing for shared memory programs (GB, DM, KP, PKS, MS), pp. 235–247.
- PLDI-2003-YotovLRCDGPPSW #comparison #empirical #modelling #optimisation
- A comparison of empirical and model-driven optimization (KY, XL, GR, MC, GD, MJG, DAP, KP, PS, PW), pp. 63–76.
- PPoPP-2003-BronevetskyMPS #automation #source code
- Automated application-level checkpointing of MPI programs (GB, DM, KP, PS), pp. 84–94.
- PLDI-1997-KodukulaAP #multi
- Data-centric Multi-level Blocking (IK, NA, KP), pp. 346–357.
- PLDI-1996-BilardiP #dependence
- Generalized Dominance and Control Dependence (GB, KP), pp. 291–300.
- PLDI-1995-PingaliB #data type #dependence #named
- APT: A Data Structure for Optimal Control Dependence Computation (KP, GB), pp. 32–46.
- PLDI-1994-JohnsonPP #linear
- The Program Structure Tree: Computing Control Regions in Linear Time (RJ, DP, KP), pp. 171–185.
- PLDI-1993-JohnsonP #dependence #program analysis
- Dependence-Based Program Analysis (RJ, KP), pp. 78–89.
- ASPLOS-1992-LiP #compilation #normalisation
- Access Normalization: Loop Restructuring for NUMA Compilers (WL, KP), pp. 285–295.
- POPL-1992-JagadeesanP #functional #higher-order #logic #semantics
- Abstract Semantics for a Higher-Order Functional Language with Logic Variables (RJ, KP), pp. 355–366.
- POPL-1991-PingaliBJMS #algebra #approach #dependence #graph
- Dependence Flow Graphs: An Algebraic Approach to Program Dependencies (KP, MB, RJ, MM, PS), pp. 67–78.
- LICS-1989-JagadeesanPP #functional #logic #semantics
- A Fully Abstract Semantics for a Functional Language with Logic Variables (RJ, PP, KP), pp. 294–303.
- PLDI-1989-RogersP #composition #locality #process
- Process Decomposition Through Locality of Reference (AR, KP), pp. 69–80.
- OOPSLA-2016-PaiP #algorithm #compilation #graph #optimisation #throughput
- A compiler for throughput optimization of graph algorithms on GPUs (SP, KP), pp. 1–19.
- OOPSLA-2019-HenriksenBP #approach #parsing
- Derivative grammars: a symbolic approach to parsing with derivatives (IH, GB, KP), p. 28.
- PLDI-2018-DathathriGHDBDS #distributed #graph #named
- Gluon: a communication-optimizing substrate for distributed heterogeneous graph analytics (RD, GG, LH, HVD, AB, ND, MS, KP), pp. 752–768.
- ASPLOS-2016-SuiLFP #approximate #source code
- Proactive Control of Approximate Programs (XS, AL, DSF, KP), pp. 607–621.
- ASPLOS-2017-NguyenP #memory management #scalability #source code #transaction #what
- What Scalable Programs Need from Transactional Memory (DN, KP), pp. 105–118.
- ASPLOS-2019-DathathriGHP #distributed #graph #named
- Phoenix: A Substrate for Resilient Distributed Graph Analytics (RD, GG, LH, KP), pp. 615–630.