Travelled to:
1 × USA
Collaborated with:
Y.L.0003 L.M.0003 J.Zhao X.Li ∅ Y.L.0008 H.Chen W.Le B.C.0001 X.Du S.Lin Q.Hu Y.Li H.Wang Y.Liu L.Zou B.Yu Y.Xue X.Wu C.Zhang Y.L.0001 S.Qin T.L.0002 Q.Guo S.Chen H.Liu Y.Zheng C.Fan T.Su J.Hao Z.Meng R.Shen Y.Chen
Talks about:
deep (6) analysi (5) learn (4) loop (4) framework (3) quantit (2) network (2) automat (2) vulner (2) system (2)
Person: Xiaofei Xie
DBLP: Xie:Xiaofei
Contributed to:
Wrote 12 papers:
- ISSTA-2015-XieLLLC #automation #multi #named #string #summary
- S-looper: automatic summarization for multipath string loops (XX, YL, WL, XL, HC), pp. 188–198.
- FSE-2016-Xiaofei #analysis
- Static loop analysis and its applications (XX), pp. 1130–1132.
- FSE-2016-XieCLLL #analysis #dependence #named #summary
- Proteus: computing disjunctive loop summary via path dependency analysis (XX, BC0, YL0, WL, XL), pp. 61–72.
- ESEC-FSE-2017-XieCZLLL #analysis #named #termination
- Loopster: static loop termination analysis (XX, BC0, LZ, SWL, YL0, XL), pp. 84–94.
- ASE-2019-DuX000Z #analysis #framework #network
- A Quantitative Analysis Framework for Recurrent Neural Network (XD, XX, YL0, LM0, YL0, JZ), pp. 1062–1065.
- ASE-2019-GuoCXMHLLZL #deployment #development #empirical #framework #learning #platform #towards
- An Empirical Study Towards Characterizing Deep Learning Development and Deployment Across Different Frameworks and Platforms (QG, SC, XX, LM0, QH, HL, YL0, JZ, XL), pp. 810–822.
- ASE-2019-Hu0XY0Z #framework #learning #mutation testing #testing
- DeepMutation++: A Mutation Testing Framework for Deep Learning Systems (QH, LM0, XX, BY, YL0, JZ), pp. 1158–1161.
- ASE-2019-XieCLM0Z #fuzzing #network
- Coverage-Guided Fuzzing for Feedforward Neural Networks (XX, HC, YL0, LM0, YL0, JZ), pp. 1162–1165.
- ASE-2019-ZhengFXS0HMLSC #automation #game studies #learning #named #online #testing #using
- Wuji: Automatic Online Combat Game Testing Using Evolutionary Deep Reinforcement Learning (YZ, CF, XX, TS, LM0, JH, ZM, YL0, RS, YC), pp. 772–784.
- ESEC-FSE-2019-DuXLM0Z #analysis #learning #modelling #named
- DeepStellar: model-based quantitative analysis of stateful deep learning systems (XD, XX, YL0, LM0, YL0, JZ), pp. 477–487.
- ESEC-FSE-2019-LiXCWZXWL #adaptation #detection #effectiveness #fuzzing #named
- Cerebro: context-aware adaptive fuzzing for effective vulnerability detection (YL, YX, HC, XW, CZ, XX, HW, YL0), pp. 533–544.
- ESEC-FSE-2019-WangXLLLQLL #layout #memory management
- Locating vulnerabilities in binaries via memory layout recovering (HW, XX, SWL, YL0, YL, SQ, YL0, TL0), pp. 718–728.