Marlon Dumas, Dietmar Pfahl, Sven Apel, Alessandra Russo
Proceedings of the 13th Joint Meeting of the 18th European Software Engineering Conference and the 27th Symposium on the Foundations of Software Engineering
ESEC/FSE, 2019.
@proceedings{ESEC-FSE-2019,
acmid = "3338906",
editor = "Marlon Dumas and Dietmar Pfahl and Sven Apel and Alessandra Russo",
isbn = "978-1-4503-5572-8",
publisher = "{ACM}",
title = "{Proceedings of the 13th Joint Meeting of the 18th European Software Engineering Conference and the 27th Symposium on the Foundations of Software Engineering}",
year = 2019,
}
Contents (150 items)
- ESEC-FSE-2019-Atlee #feature model #interactive
- Living with feature interactions (keynote) (JMA), p. 1.
- ESEC-FSE-2019-Kwiatkowska #learning #robust #safety
- Safety and robustness for deep learning with provable guarantees (keynote) (MK), p. 2.
- ESEC-FSE-2019-Mockus #open source
- Insights from open source software supply chains (keynote) (AM), p. 3.
- ESEC-FSE-2019-AhmadiD #modelling #testing
- Concolic testing for models of state-based systems (RA, JD), pp. 4–15.
- ESEC-FSE-2019-KimHK #composition #debugging #detection #effectiveness #refinement #summary #testing
- Target-driven compositional concolic testing with function summary refinement for effective bug detection (YK, SH, MK), pp. 16–26.
- ESEC-FSE-2019-MenghiNGB #automation #behaviour #generative #modelling #nondeterminism #online #testing
- Generating automated and online test oracles for Simulink models with continuous and uncertain behaviors (CM, SN, KG, LCB), pp. 27–38.
- ESEC-FSE-2019-ShahinCS #analysis #product line
- Lifting Datalog-based analyses to software product lines (RS, MC, RS), pp. 39–49.
- ESEC-FSE-2019-MordahlOKWG #debugging #detection #empirical #tool support #variability
- An empirical study of real-world variability bugs detected by variability-oblivious tools (AM, JO, UK, SW, PG), pp. 50–61.
- ESEC-FSE-2019-NesicKSB #feature model #modelling
- Principles of feature modeling (DN, JK, SS, TB), pp. 62–73.
- ESEC-FSE-2019-RiggerMAM #comprehension #tool support
- Understanding GCC builtins to develop better tools (MR, SM, BA, HM), pp. 74–85.
- ESEC-FSE-2019-ChaparroBLMMPPN #debugging #quality
- Assessing the quality of the steps to reproduce in bug reports (OC, CBC, JL, KM, AM, MDP, DP, VN), pp. 86–96.
- ESEC-FSE-2019-Wang0LXBXW #approach #automation #documentation #source code #taxonomy
- A learning-based approach for automatic construction of domain glossary from source code and documentation (CW, XP0, ML, ZX, XB, BX, TW), pp. 97–108.
- ESEC-FSE-2019-FucciMM #api #documentation #identification #machine learning #on the #using
- On using machine learning to identify knowledge in API reference documentation (DF, AM, WM), pp. 109–119.
- ESEC-FSE-2019-Liu0MXXXL #api #generative #summary
- Generating query-specific class API summaries (ML, XP0, AM, ZX, WX, SX, YL), pp. 120–130.
- ESEC-FSE-2019-JiangLZ #semantics
- Semantic relation based expansion of abbreviations (YJ, HL, LZ), pp. 131–141.
- ESEC-FSE-2019-BiagiolaSRT #generative #testing #web
- Diversity-based web test generation (MB, AS, FR, PT), pp. 142–153.
- ESEC-FSE-2019-BiagiolaSMRT #dependence #detection #web
- Web test dependency detection (MB, AS, AM, FR, PT), pp. 154–164.
- ESEC-FSE-2019-StahlbauerKF #automation #source code #testing
- Testing scratch programs automatically (AS, MK, GF), pp. 165–175.
- ESEC-FSE-2019-Zhang0C0Z #compilation #empirical #fault #integration #scalability
- A large-scale empirical study of compiler errors in continuous integration (CZ, BC0, LC, XP0, WZ), pp. 176–187.
- ESEC-FSE-2019-HeMS0PS #performance #statistics #testing
- A statistics-based performance testing methodology for cloud applications (SH, GM, JS, WW0, LLP, MLS), pp. 188–199.
- ESEC-FSE-2019-CotroneoSLNB #analysis #debugging #empirical #framework #how #in the cloud #platform
- How bad can a bug get? an empirical analysis of software failures in the OpenStack cloud computing platform (DC, LDS, PL, RN, NB), pp. 200–211.
- ESEC-FSE-2019-LinCLLZ #algorithm #combinator #generative #metaheuristic #performance #testing #towards
- Towards more efficient meta-heuristic algorithms for combinatorial test generation (JL, SC, CL, QL, HZ0), pp. 212–222.
- ESEC-FSE-2019-ChenHSZHZ #compilation #debugging #effectiveness #generative
- Compiler bug isolation via effective witness test program generation (JC, JH, PS, LZ, DH, LZ0), pp. 223–234.
- ESEC-FSE-2019-ChaO #adaptation #heuristic #testing
- Concolic testing with adaptively changing search heuristics (SC, HO), pp. 235–245.
- ESEC-FSE-2019-BaresiDQ #execution #parallel #symbolic computation
- Symbolic execution-driven extraction of the parallel execution plans of Spark applications (LB, GD, GQ), pp. 246–256.
- ESEC-FSE-2019-GambiHF #effectiveness #generative #self #testing
- Generating effective test cases for self-driving cars from police reports (AG, TH, GF), pp. 257–267.
- ESEC-FSE-2019-LuPZ0L #android #testing
- Preference-wise testing for Android applications (YL, MP, JZ, TZ0, XL), pp. 268–278.
- ESEC-FSE-2019-NajafiRS #commit #modelling #testing
- Bisecting commits and modeling commit risk during testing (AN, PCR, WS), pp. 279–289.
- ESEC-FSE-2019-GulzarMMK #big data #data analysis #testing
- White-box testing of big data analytics with complex user-defined functions (MAG, SM, MM, MK), pp. 290–301.
- ESEC-FSE-2019-DurieuxDMA #debugging #empirical #java #overview #program repair #scalability #tool support
- Empirical review of Java program repair tools: a large-scale experiment on 2, 141 bugs and 23, 551 repair attempts (TD, FM, MM, RA), pp. 302–313.
- ESEC-FSE-2019-KoyuncuLB0MKT #debugging #named #program repair
- iFixR: bug report driven program repair (AK, KL0, TFB, DK0, MM, JK, YLT), pp. 314–325.
- ESEC-FSE-2019-WenWLTXCS #commit #correlation #debugging
- Exploring and exploiting the correlations between bug-inducing and bug-fixing commits (MW, RW, YL, YT, XX, SCC, ZS), pp. 326–337.
- ESEC-FSE-2019-KrugerCBLS #comprehension #traceability
- Effects of explicit feature traceability on program comprehension (JK, GÇ, TB, TL, GS), pp. 338–349.
- ESEC-FSE-2019-ZhouVK #case study #performance #social #what
- What the fork: a study of inefficient and efficient forking practices in social coding (SZ, BV, CK), pp. 350–361.
- ESEC-FSE-2019-SongZH #android #detection #named
- ServDroid: detecting service usage inefficiencies in Android applications (WS0, JZ, JH0), pp. 362–373.
- ESEC-FSE-2019-PauckW #analysis #android
- Together strong: cooperative Android app analysis (FP, HW), pp. 374–384.
- ESEC-FSE-2019-NieRLKMG #execution #framework
- A framework for writing trigger-action todo comments in executable format (PN, RR, JJL, SK, RJM, MG), pp. 385–396.
- ESEC-FSE-2019-SafwanS #commit #developer #perspective
- Decomposing the rationale of code commits: the software developer's perspective (KAS, FS), pp. 397–408.
- ESEC-FSE-2019-MollerT #library #modelling #testing
- Model-based testing of breaking changes in Node.js libraries (AM, MTT), pp. 409–419.
- ESEC-FSE-2019-WinterACD #ide
- Monitoring-aware IDEs (JW, MFA, JC, AvD), pp. 420–431.
- ESEC-FSE-2019-BagherzadehK #big data #developer #scalability #what
- Going big: a large-scale study on what big data developers ask (MB, RK), pp. 432–442.
- ESEC-FSE-2019-DavisMCSL #empirical #regular expression #why
- Why aren't regular expressions a lingua franca? an empirical study on the re-use and portability of regular expressions (JCD, LGMI, CAC, FS, DL), pp. 443–454.
- ESEC-FSE-2019-NielsenHG #named #static analysis
- Nodest: feedback-driven static analysis of Node.js applications (BBN, BH, FG), pp. 455–465.
- ESEC-FSE-2019-DeFreezBRT #effectiveness
- Effective error-specification inference via domain-knowledge expansion (DD, HMB, CRG, AVT), pp. 466–476.
- ESEC-FSE-2019-DuXLM0Z #analysis #learning #modelling #named
- DeepStellar: model-based quantitative analysis of stateful deep learning systems (XD, XX, YL0, LM0, YL0, JZ), pp. 477–487.
- ESEC-FSE-2019-WuJYBSPX #grammar inference #learning #named
- REINAM: reinforcement learning for input-grammar inference (ZW, EJ, WY0, OB, DS, JP, TX0), pp. 488–498.
- ESEC-FSE-2019-LiM0CX0 #performance #testing
- Boosting operational DNN testing efficiency through conditioning (ZL, XM, CX0, CC, JX0, JL0), pp. 499–509.
- ESEC-FSE-2019-IslamNPR #debugging #learning
- A comprehensive study on deep learning bug characteristics (MJI, GN, RP, HR), pp. 510–520.
- ESEC-FSE-2019-LiewCDS #constraints #float #fuzzing #using
- Just fuzz it: solving floating-point constraints using coverage-guided fuzzing (DL, CC, AFD, JRS), pp. 521–532.
- ESEC-FSE-2019-LiXCWZXWL #adaptation #detection #effectiveness #fuzzing #named
- Cerebro: context-aware adaptive fuzzing for effective vulnerability detection (YL, YX, HC, XW, CZ, XX, HW, YL0), pp. 533–544.
- ESEC-FSE-2019-ShiLOXM #automation #framework #named #testing
- iFixFlakies: a framework for automatically fixing order-dependent flaky tests (AS, WL, RO, TX, DM), pp. 545–555.
- ESEC-FSE-2019-KalhaugeP #dependence #graph #reduction
- Binary reduction of dependency graphs (CGK, JP), pp. 556–566.
- ESEC-FSE-2019-PobeeC #concurrent #multi #named #performance #source code #thread
- AggrePlay: efficient record and replay of multi-threaded programs (EBP, WKC), pp. 567–577.
- ESEC-FSE-2019-HiraoMIM #approach #code review #empirical #graph #overview
- The review linkage graph for code review analytics: a recovery approach and empirical study (TH, SM, AI, KM), pp. 578–589.
- ESEC-FSE-2019-WangSW #compilation
- Mitigating power side channels during compilation (JW, CS, CW0), pp. 590–601.
- ESEC-FSE-2019-ChenMF #multi #specification #synthesis
- Maximal multi-layer specification synthesis (YC, RM, YF), pp. 602–612.
- ESEC-FSE-2019-BavishiYP #automation #data-driven #named #static analysis #synthesis
- Phoenix: automated data-driven synthesis of repairs for static analysis violations (RB, HY, MRP), pp. 613–624.
- ESEC-FSE-2019-AggarwalLNDS #black box #machine learning #modelling #testing
- Black box fairness testing of machine learning models (AA, PL, SN, KD, DS), pp. 625–635.
- ESEC-FSE-2019-PontesGSGR #api #java
- Java reflection API: revealing the dark side of the mirror (FP, RG, SS, AG, MR), pp. 636–646.
- ESEC-FSE-2019-WidderHKV #concept #integration #replication
- A conceptual replication of continuous integration pain points in the context of Travis CI (DGW, MH, CK, BV), pp. 647–658.
- ESEC-FSE-2019-ZhangHZHB #overview #re-engineering #research
- Ethnographic research in software engineering: a critical review and checklist (HZ, XH, XZ, HH, MAB), pp. 659–670.
- ESEC-FSE-2019-SantosSCGM #approach #architecture
- Achilles' heel of plug-and-Play software architectures: a grounded theory based approach (JCSS, AS, TC, SG, MM), pp. 671–682.
- ESEC-FSE-2019-Zhou0X0JLXH #fault #learning #locality #predict
- Latent error prediction and fault localization for microservice applications by learning from system trace logs (XZ, XP0, TX, JS0, CJ, DL, QX, CH), pp. 683–694.
- ESEC-FSE-2019-JimenezRPSTH #predict
- The importance of accounting for real-world labelling when predicting software vulnerabilities (MJ, RR, MP, FS, YLT, MH), pp. 695–705.
- ESEC-FSE-2019-CaiZMYHSL #concurrent #detection #memory management
- Detecting concurrency memory corruption vulnerabilities (YC, BZ, RM, HY, LH, PS, BL0), pp. 706–717.
- ESEC-FSE-2019-WangXLLLQLL #layout #memory management
- Locating vulnerabilities in binaries via memory layout recovering (HW, XX, SWL, YL0, YL, SQ, YL0, TL0), pp. 718–728.
- ESEC-FSE-2019-DuttaZHM #debugging #named #probability #programming #reduction #testing
- Storm: program reduction for testing and debugging probabilistic programming systems (SD, WZ, ZH, SM), pp. 729–739.
- ESEC-FSE-2019-BanerjeeCS #java #named #null #safety #type system
- NullAway: practical type-based null safety for Java (SB, LC, MS), pp. 740–750.
- ESEC-FSE-2019-JiaLYLW #automation #detection
- Automatically detecting missing cleanup for ungraceful exits (ZJ, SL, TY, XL, JW), pp. 751–762.
- ESEC-FSE-2019-ZhangSYZPS #comprehension #debugging #model checking
- Finding and understanding bugs in software model checkers (CZ, TS, YY, FZ, GP, ZS), pp. 763–773.
- ESEC-FSE-2019-KapusC #execution #memory management #symbolic computation
- A segmented memory model for symbolic execution (TK, CC), pp. 774–784.
- ESEC-FSE-2019-KulaRHDG #case study #performance
- Releasing fast and slow: an exploratory case study at ING (EK, AR, HH, AvD, GG), pp. 785–795.
- ESEC-FSE-2019-BuiYJ #api #learning #named
- SAR: learning cross-language API mappings with little knowledge (NDQB, YY, LJ), pp. 796–806.
- ESEC-FSE-2019-ZhangXLQZDXYCLC #detection #robust
- Robust log-based anomaly detection on unstable log data (XZ, YX, QL, BQ, HZ0, YD, CX, XY, QC, ZL, JC0, XH, RY, JGL, MC, FS, DZ), pp. 807–817.
- ESEC-FSE-2019-SuWC0 #java #performance
- Pinpointing performance inefficiencies in Java (PS, QW, MC, XL0), pp. 818–829.
- ESEC-FSE-2019-EckPCB #comprehension #developer #perspective #testing
- Understanding flaky tests: the developer's perspective (ME, FP, MC, AB), pp. 830–840.
- ESEC-FSE-2019-ChenCLML #analysis #approach #learning #named #re-engineering #sentiment
- SEntiMoji: an emoji-powered learning approach for sentiment analysis in software engineering (ZC, YC, XL, QM, XL), pp. 841–852.
- ESEC-FSE-2019-JinWXPDQ0X #generative #named #testing
- FinExpert: domain-specific test generation for FinTech systems (TJ, QW, LX, CP, LD, HQ, LH0, TX), pp. 853–862.
- ESEC-FSE-2019-LohiaKSM #design #diagrams #ontology
- Design diagrams as ontological source (PL, KK, BS, SM), pp. 863–873.
- ESEC-FSE-2019-MaddilaBN #case study #predict #scalability
- Predicting pull request completion time: a case study on large scale cloud services (CSM, CB, NN), pp. 874–882.
- ESEC-FSE-2019-YuFMRPC #automation #named #testing #user interface
- TERMINATOR: better automated UI test case prioritization (ZY0, FMF, TM, GR, KP, SC), pp. 883–894.
- ESEC-FSE-2019-OlssonF #ecosystem #industrial #mining #risk management
- Risks and assets: a qualitative study of a software ecosystem in the mining industry (TO, UF), pp. 895–904.
- ESEC-FSE-2019-NguyenSCMBL #as a service #multitenancy #using
- Using microservices for non-intrusive customization of multi-tenant SaaS (PHN, HS, FC, RM, SB, EL), pp. 905–915.
- ESEC-FSE-2019-ChenCCHCM #predict
- Predicting breakdowns in cloud services (with SPIKE) (JC, JC, PC, KH, SC, TM), pp. 916–924.
- ESEC-FSE-2019-MesbahRJGA #compilation #fault #learning #named
- DeepDelta: learning to repair compilation errors (AM, AR, EJ, NG, EA), pp. 925–936.
- ESEC-FSE-2019-AsthanaKBBBMMA #automation #named #scalability
- WhoDo: automating reviewer suggestions at scale (SA, RK0, RB, CB, CB, CSM, SM, BA), pp. 937–945.
- ESEC-FSE-2019-MiryeganehAH #approach #automation #dataset #integration #towards
- An IR-based approach towards automated integration of geo-spatial datasets in map-based software systems (NM, MA, HH), pp. 946–954.
- ESEC-FSE-2019-IvankovicPJF #test coverage
- Code coverage at Google (MI, GP, RJ, GF), pp. 955–963.
- ESEC-FSE-2019-CambroneroLKS0 #code search #learning
- When deep learning met code search (JC, HL, SK, KS, SC0), pp. 964–974.
- ESEC-FSE-2019-BabicBCIKKLSW #generative #named #scalability
- FUDGE: fuzz driver generation at scale (DB, SB, YC, FI, TK, MK, CL, LS, WW), pp. 975–985.
- ESEC-FSE-2019-ShiWFWSJSJS #enterprise #fuzzing #industrial #kernel #linux
- Industry practice of coverage-guided enterprise Linux kernel fuzzing (HS, RW, YF, MW, XS, XJ, HS, YJ0, JS), pp. 986–995.
- ESEC-FSE-2019-RueckertBKSMF #architecture #case study #experience #industrial
- Architectural decision forces at work: experiences in an industrial consultancy setting (JR, AB, HK, TS, AM, CF), pp. 996–1005.
- ESEC-FSE-2019-Gamez-Diaz0RMKB #api #industrial
- The role of limitations and SLAs in the API industry (AGD, PF0, ARC, PJM, NK, PB, MM, FM), pp. 1006–1014.
- ESEC-FSE-2019-NejatiGMBFW #model checking #modelling #requirements #testing
- Evaluating model testing and model checking for finding requirements violations in Simulink models (SN, KG, CM, LCB, SF, DW), pp. 1015–1025.
- ESEC-FSE-2019-LangP #c++ #case study #framework #model checking
- Model checking a C++ software framework: a case study (JL, ISWBP), pp. 1026–1036.
- ESEC-FSE-2019-Morales-Trujillo #case study #evolution #experience
- Evolving with patterns: a 31-month startup experience report (MEMT, GAGM), pp. 1037–1047.
- ESEC-FSE-2019-BarashFJRTZ #feature model #interactive #ml #requirements #using
- Bridging the gap between ML solutions and their business requirements using feature interactions (GB, EF, IJ, OR, RTB, MZ), pp. 1048–1058.
- ESEC-FSE-2019-DobrigkeitP #comprehension #design #re-engineering
- Design thinking in practice: understanding manifestations of design thinking in software engineering (FD, DdP), pp. 1059–1069.
- ESEC-FSE-2019-CorreiaASN #multi #named #testing #using
- MOTSD: a multi-objective test selection tool using test suite diagnosability (DC, RA, PS, JN), pp. 1070–1074.
- ESEC-FSE-2019-CaiWH0X0 #api #named #recommendation
- BIKER: a tool for Bi-information source based API method recommendation (LC, HW, QH, XX0, ZX, DL0), pp. 1075–1079.
- ESEC-FSE-2019-ChekamPT #generative #named
- Mart: a mutant generation tool for LLVM (TTC, MP, YLT), pp. 1080–1084.
- ESEC-FSE-2019-TundoMORGM #as a service #framework #modelling #named
- VARYS: an agnostic model-driven monitoring-as-a-service framework for the cloud (AT, MM, MO, OR, MG, LM), pp. 1085–1089.
- ESEC-FSE-2019-StallenbergP #detection #injection #named #search-based #web #xml
- JCOMIX: a search-based tool to detect XML injection vulnerabilities in web applications (DMS, AP), pp. 1090–1094.
- ESEC-FSE-2019-SuiZZZX #analysis #android #debugging #difference #effectiveness #reduction #user interface
- Event trace reduction for effective bug replay of Android apps via differential GUI state analysis (YS, YZ0, WZ, MZ, JX), pp. 1095–1099.
- ESEC-FSE-2019-AnBPY #framework #independence #search-based
- PyGGI 2.0: language independent genetic improvement framework (GA, AB, JP, SY), pp. 1100–1104.
- ESEC-FSE-2019-MostaeenSRRS #machine learning #named #validation
- CloneCognition: machine learning based code clone validation tool (GM, JS, BR, CKR, KAS), pp. 1105–1109.
- ESEC-FSE-2019-FuRMSYJLS #detection #named #testing
- EVMFuzzer: detect EVM vulnerabilities via fuzz testing (YF, MR, FM, HS, XY, YJ0, HL, XS), pp. 1110–1114.
- ESEC-FSE-2019-FuC #distributed
- A dynamic taint analyzer for distributed systems (XF, HC), pp. 1115–1119.
- ESEC-FSE-2019-Gamez-Diaz0R #api #ecosystem
- Governify for APIs: SLA-driven ecosystem for API governance (AGD, PF0, ARC), pp. 1120–1123.
- ESEC-FSE-2019-AtzeiBLYZ #contract
- Developing secure bitcoin contracts with BitML (NA, MB, SL, NY, RZ), pp. 1124–1128.
- ESEC-FSE-2019-AwadhutkarSHK #algorithm #complexity #detection #named
- DISCOVER: detecting algorithmic complexity vulnerabilities (PA, GRS, BH, SK), pp. 1129–1133.
- ESEC-FSE-2019-CaiWXH00X #generative #named #stack overflow #summary
- AnswerBot: an answer summary generation tool based on stack overflow (LC, HW, BX, QH, XX0, DL0, ZX), pp. 1134–1138.
- ESEC-FSE-2019-GuerreroFJF0MR #agile #development #framework #named
- Eagle: a team practices audit framework for agile software development (AG, RF, AJ, AF, PF0, CM, ARC), pp. 1139–1143.
- ESEC-FSE-2019-Caulo #fault #metric #predict #taxonomy
- A taxonomy of metrics for software fault prediction (MC), pp. 1144–1147.
- ESEC-FSE-2019-Coviello #distributed #execution #integration #testing
- Distributed execution of test cases and continuous integration (CC), pp. 1148–1151.
- ESEC-FSE-2019-Denkers #case study #domain-specific language #industrial #using
- A longitudinal field study on creation and use of domain-specific languages in industry (JD), pp. 1152–1155.
- ESEC-FSE-2019-Ginelli #program repair
- Failure-driven program repair (DG), pp. 1156–1159.
- ESEC-FSE-2019-Greiner #model transformation #on the #product line #reuse
- On extending single-variant model transformations for reuse in software product line engineering (SG), pp. 1160–1163.
- ESEC-FSE-2019-Karlsson
- Exploratory test agents for stateful software systems (SK), pp. 1164–1167.
- ESEC-FSE-2019-Marques #developer #documentation #natural language
- Helping developers search and locate task-relevant information in natural language documents (AM), pp. 1168–1171.
- ESEC-FSE-2019-Melegati #requirements
- Improving requirements engineering practices to support experimentation in software startups (JM), pp. 1172–1175.
- ESEC-FSE-2019-Muller
- Managing the open cathedral (MM0), pp. 1176–1179.
- ESEC-FSE-2019-Sonnekalb #detection #source code
- Machine-learning supported vulnerability detection in source code (TS), pp. 1180–1183.
- ESEC-FSE-2019-Papachristou #clustering #graph #semantics
- Software clusterings with vector semantics and the call graph (MP), pp. 1184–1186.
- ESEC-FSE-2019-Moghadam #machine learning #performance #testing
- Machine learning-assisted performance testing (MHM), pp. 1187–1189.
- ESEC-FSE-2019-Stepanov
- File tracing by intercepting disk requests (VS), pp. 1190–1192.
- ESEC-FSE-2019-Abid #api #recommendation
- Recommending related functions from API usage-based function clone structures (SA), pp. 1193–1195.
- ESEC-FSE-2019-Cetin #developer #graph #identification #traceability #using
- Identifying the most valuable developers using artifact traceability graphs (HAC), pp. 1196–1198.
- ESEC-FSE-2019-Ren #automation #migration
- Automated patch porting across forked projects (LR), pp. 1199–1201.
- ESEC-FSE-2019-Mitropoulos #debugging #evolution #program analysis
- Employing different program analysis methods to study bug evolution (CM), pp. 1202–1204.
- ESEC-FSE-2019-Tan #kernel #linux #maintenance #multi
- Reducing the workload of the Linux kernel maintainers: multiple-committer model (XT), pp. 1205–1207.
- ESEC-FSE-2019-Loukeris #performance
- Efficient computing in a safe environment (ML), pp. 1208–1210.
- ESEC-FSE-2019-Nurgalieva #development #process
- The lessons software engineers can extract from painters to improve the software development process (MN), pp. 1211–1213.
- ESEC-FSE-2019-Correia #industrial #testing #using
- An industrial application of test selection using test suite diagnosability (DC), pp. 1214–1216.
- ESEC-FSE-2019-He #comprehension #scalability #source code
- Understanding source code comments at large-scale (HH), pp. 1217–1219.
- ESEC-FSE-2019-Vandenbogaerde #contract #design #framework #graph
- A graph-based framework for analysing the design of smart contracts (BV), pp. 1220–1222.
- ESEC-FSE-2019-Valdes
- Finding the shortest path to reproduce a failure found by TESTAR (ORV), pp. 1223–1225.
- ESEC-FSE-2019-Golzadeh #congruence #dependence #network
- Analysing socio-technical congruence in the package dependency network of Cargo (MG), pp. 1226–1228.
- ESEC-FSE-2019-He19a #comprehension #debugging #detection #fault #performance
- Tuning backfired? not (always) your fault: understanding and detecting configuration-related performance bugs (HH), pp. 1229–1231.
- ESEC-FSE-2019-SangleM #on the #open source #python #using
- On the use of lambda expressions in 760 open source Python projects (SS, SM), pp. 1232–1234.
- ESEC-FSE-2019-Pecorelli #empirical #fault
- Test-related factors and post-release defects: an empirical study (FP), pp. 1235–1237.
- ESEC-FSE-2019-Pan #analysis #network #robust
- Static deep neural network analysis for robustness (RP), pp. 1238–1240.
- ESEC-FSE-2019-Khanve #empirical #game studies #smell #web
- Are existing code smells relevant in web games? an empirical study (VK), pp. 1241–1243.
- ESEC-FSE-2019-Kruger #evolution
- Tackling knowledge needs during software evolution (JK), pp. 1244–1246.
- ESEC-FSE-2019-Fu #analysis #distributed #on the #scalability
- On the scalable dynamic taint analysis for distributed systems (XF), pp. 1247–1249.
- ESEC-FSE-2019-Sulun #graph #traceability #using
- Suggesting reviewers of software artifacts using traceability graphs (ES), pp. 1250–1252.
- ESEC-FSE-2019-Radavelli #modelling #testing #using
- Using software testing to repair models (MR), pp. 1253–1255.
- ESEC-FSE-2019-Davis #regular expression
- Rethinking Regex engines to address ReDoS (JCD), pp. 1256–1258.
- ESEC-FSE-2019-Sun #adaptation #testing
- Context-aware test case adaptation (PS), pp. 1259–1261.
- ESEC-FSE-2019-Gizzatullina #agile #communication #empirical #problem #requirements
- Empirical study of customer communication problem in agile requirements engineering (IG), pp. 1262–1264.