BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Used together with:
larg (27)
learn (25)
maximum (23)
max (18)
base (15)

Stem margin$ (all stems)

143 papers:

DATEDATE-2015-ChungSS #identification
Identifying redundant inter-cell margins and its application to reducing routing congestion (WC, SS, YS), pp. 1659–1664.
DATEDATE-2015-ConstantinWKCB
Exploiting dynamic timing margins in microprocessors for frequency-over-scaling with instruction-based clock adjustment (JC, LW, GK, AC, AB), pp. 381–386.
DATEDATE-2015-GomezPBRBFG #design #energy
Reducing energy consumption in microcontroller-based platforms with low design margin co-processors (AG, CP, AB, DR, LB, HF, JPdG), pp. 269–272.
DLTDLT-2015-HanKS #fault
Generalizations of Code Languages with Marginal Errors (YSH, SKK, KS), pp. 264–275.
ICMLICML-2015-HayashiMF
Rebuilding Factorized Information Criterion: Asymptotically Accurate Marginal Likelihood (KH, SiM, RF), pp. 1358–1366.
ICMLICML-2015-PachecoS #approach #pseudo
Proteins, Particles, and Pseudo-Max-Marginals: A Submodular Approach (JP, EBS), pp. 2200–2208.
ICMLICML-2015-YuanHTLC #modelling
Non-Gaussian Discriminative Factor Models via the Max-Margin Rank-Likelihood (XY, RH, ET, RL, LC), pp. 1254–1263.
SIGIRSIGIR-2015-XiaXLGC #evaluation #learning #metric #optimisation
Learning Maximal Marginal Relevance Model via Directly Optimizing Diversity Evaluation Measures (LX, JX, YL, JG, XC), pp. 113–122.
DATEDATE-2014-0001GWKAWG #optimisation #performance #runtime
Exploiting expendable process-margins in DRAMs for run-time performance optimization (KC, SG, CW, MK, BA, NW, KG), pp. 1–6.
SIGMODSIGMOD-2014-QardajiYL #named
PriView: practical differentially private release of marginal contingency tables (WHQ, WY, NL), pp. 1435–1446.
CHICHI-2014-DachteraRW #design #industrial #research
Research on research: design research at the margins: academia, industry and end-users (JD, DWR, VW), pp. 713–722.
CHICHI-2014-HoareBJM #online
Coming in from the margins: amateur musicians in the online age (MH, SB, RJ, NMF), pp. 1295–1304.
ICMLICML-c1-2014-LajugieBA #clustering #learning #metric #problem
Large-Margin Metric Learning for Constrained Partitioning Problems (RL, FRB, SA), pp. 297–305.
ICMLICML-c1-2014-RamdasP #kernel
Margins, Kernels and Non-linear Smoothed Perceptrons (AR, JP), pp. 244–252.
ICMLICML-c1-2014-ZhangZZ #infinity #markov #modelling
Max-Margin Infinite Hidden Markov Models (AZ, JZ, BZ), pp. 315–323.
ICMLICML-c2-2014-ChenWSB
Marginalized Denoising Auto-encoders for Nonlinear Representations (MC, KQW, FS, YB), pp. 1476–1484.
ICMLICML-c2-2014-KarninH #linear
Hard-Margin Active Linear Regression (ZSK, EH), pp. 883–891.
ICMLICML-c2-2014-KontorovichW #multi #nearest neighbour
Maximum Margin Multiclass Nearest Neighbors (AK, RW), pp. 892–900.
ICMLICML-c2-2014-LiZ0 #learning #multi
Bayesian Max-margin Multi-Task Learning with Data Augmentation (CL, JZ, JC), pp. 415–423.
ICMLICML-c2-2014-PingLI
Marginal Structured SVM with Hidden Variables (WP, QL, ATI), pp. 190–198.
ICMLICML-c2-2014-QuattoniBCG #sequence
Spectral Regularization for Max-Margin Sequence Tagging (AQ, BB, XC, AG), pp. 1710–1718.
ICMLICML-c2-2014-XuTXR #reduction
Large-margin Weakly Supervised Dimensionality Reduction (CX, DT, CX, YR), pp. 865–873.
ICPRICPR-2014-Filippone #classification #process #pseudo
Bayesian Inference for Gaussian Process Classifiers with Annealing and Pseudo-Marginal MCMC (MF), pp. 614–619.
ICPRICPR-2014-Jain #graph
Margin Perceptrons for Graphs (BJJ), pp. 3851–3856.
ICPRICPR-2014-NguyenTHM #classification #novel
A Novel Sphere-Based Maximum Margin Classification Method (PN, DT, XH, WM), pp. 620–624.
ICPRICPR-2014-OHarneyMRCSCBF #kernel #learning #multi #pseudo
Pseudo-Marginal Bayesian Multiple-Class Multiple-Kernel Learning for Neuroimaging Data (ADO, AM, KR, KC, ABS, AC, CB, MF), pp. 3185–3190.
ICPRICPR-2014-WangGJ #learning #using
Learning with Hidden Information Using a Max-Margin Latent Variable Model (ZW, TG, QJ), pp. 1389–1394.
KDDKDD-2014-ZhangZ #scalability
Large margin distribution machine (TZ, ZHZ), pp. 313–322.
HCIHIMI-HSM-2013-KarashimaN #behaviour #safety
Influence of the Safety Margin on Behavior that Violates Rules (MK, HN), pp. 497–506.
ICMLICML-c1-2013-DoK
Convex formulations of radius-margin based Support Vector Machines (HD, AK), pp. 169–177.
ICMLICML-c1-2013-MaatenCTW #learning
Learning with Marginalized Corrupted Features (LvdM, MC, ST, KQW), pp. 410–418.
ICMLICML-c1-2013-ZhuCPZ #algorithm #modelling #performance #topic
Gibbs Max-Margin Topic Models with Fast Sampling Algorithms (JZ, NC, HP, BZ), pp. 124–132.
ICMLICML-c2-2013-Telgarsky
Margins, Shrinkage, and Boosting (MT), pp. 307–315.
ICMLICML-c3-2013-BalasubramanianYL #learning
Smooth Sparse Coding via Marginal Regression for Learning Sparse Representations (KB, KY, GL), pp. 289–297.
ICMLICML-c3-2013-CortesMR #classification #kernel #multi
Multi-Class Classification with Maximum Margin Multiple Kernel (CC, MM, AR), pp. 46–54.
ICMLICML-c3-2013-HockingRVB #detection #learning #using
Learning Sparse Penalties for Change-point Detection using Max Margin Interval Regression (TH, GR, JPV, FRB), pp. 172–180.
ICMLICML-c3-2013-PeharzTP #generative #network
The Most Generative Maximum Margin Bayesian Networks (RP, ST, FP), pp. 235–243.
ICMLICML-c3-2013-WangWBLT #learning #multi #taxonomy
Max-Margin Multiple-Instance Dictionary Learning (XW, BW, XB, WL, ZT), pp. 846–854.
ICMLICML-c3-2013-XuZZ #matrix #performance
Fast Max-Margin Matrix Factorization with Data Augmentation (MX, JZ, BZ), pp. 978–986.
KDDKDD-2013-ZhuZZZ #modelling #scalability #topic
Scalable inference in max-margin topic models (JZ, XZ, LZ, BZ), pp. 964–972.
SIGIRSIGIR-2013-LuWTZHZ #rank #ranking #scalability
A low rank structural large margin method for cross-modal ranking (XL, FW, ST, ZZ, XH, YZ), pp. 433–442.
CASECASE-2012-JeongC #algorithm #independence #quality
Independent contact region (ICR) based in-hand motion planning algorithm with guaranteed grasp quality margin (HJ, JC), pp. 1089–1094.
ICALPICALP-v1-2012-ThalerUV #algorithm #performance
Faster Algorithms for Privately Releasing Marginals (JT, JU, SPV), pp. 810–821.
CIKMCIKM-2012-FanZCCO #clustering
Maximum margin clustering on evolutionary data (XF, LZ, LC, XC, YSO), pp. 625–634.
CIKMCIKM-2012-XuCWS #representation
From sBoW to dCoT marginalized encoders for text representation (ZEX, MC, KQW, FS), pp. 1879–1884.
ICMLICML-2012-ChenXWS #adaptation
Marginalized Denoising Autoencoders for Domain Adaptation (MC, ZEX, KQW, FS), p. 212.
ICMLICML-2012-MauaC
Anytime Marginal MAP Inference (DDM, CPdC), p. 181.
ICMLICML-2012-PeharzP #learning #network
Exact Maximum Margin Structure Learning of Bayesian Networks (RP, FP), p. 102.
ICMLICML-2012-ShiSHH #question #random
Is margin preserved after random projection? (QS, CS, RH, AvdH), p. 86.
ICMLICML-2012-ZhangS
Maximum Margin Output Coding (YZ, JGS), p. 53.
ICMLICML-2012-Zhu #feature model #modelling #parametricity #predict
Max-Margin Nonparametric Latent Feature Models for Link Prediction (JZ), p. 154.
ICPRICPR-2012-ChenYY #analysis #null #recognition #scalability
Large margin null space discriminant analysis with applications to face recognition (XC, JY, WY), pp. 1679–1682.
ICPRICPR-2012-SuDRH
Hypergraph matching based on Marginalized Constrained Compatibility (JS, LD, PR, ERH), pp. 2922–2925.
KDDKDD-2012-ChattopadhyayWFDPY #probability
Batch mode active sampling based on marginal probability distribution matching (RC, ZW, WF, ID, SP, JY), pp. 741–749.
CASECASE-2011-LeH #analysis #random
Marginal analysis on binary pairwise Gibbs random fields (TL, CNH), pp. 316–321.
CIKMCIKM-2011-ZhaoYX #independence #information management #learning #web
Max margin learning on domain-independent web information extraction (BZ, XY, EPX), pp. 1305–1310.
ICMLICML-2011-Gould #learning #linear #markov #random
Max-margin Learning for Lower Linear Envelope Potentials in Binary Markov Random Fields (SG), pp. 193–200.
ICMLICML-2011-KamisettyXL #approximate #correlation #using
Approximating Correlated Equilibria using Relaxations on the Marginal Polytope (HK, EPX, CJL), pp. 1153–1160.
ICMLICML-2011-ZhuCX #infinity #kernel #process
Infinite SVM: a Dirichlet Process Mixture of Large-margin Kernel Machines (JZ, NC, EPX), pp. 617–624.
KDDKDD-2011-FujimakiSM #modelling #online
Online heterogeneous mixture modeling with marginal and copula selection (RF, YS, SM), pp. 645–653.
KDDKDD-2011-ZhangHLSL #approach #learning #multi #scalability
Multi-view transfer learning with a large margin approach (DZ, JH, YL, LS, RDL), pp. 1208–1216.
SIGIRSIGIR-2011-WangZ #e-commerce #recommendation
Utilizing marginal net utility for recommendation in e-commerce (JW, YZ), pp. 1003–1012.
ECIRECIR-2010-AgarwalC #algorithm #information retrieval #ranking
Maximum Margin Ranking Algorithms for Information Retrieval (SA, MC), pp. 332–343.
ICMLICML-2010-HariharanZVV #classification #multi #scalability
Large Scale Max-Margin Multi-Label Classification with Priors (BH, LZM, SVNV, MV), pp. 423–430.
ICMLICML-2010-PanagiotakopoulosT
The Margin Perceptron with Unlearning (CP, PT), pp. 855–862.
ICPRICPR-2010-CevikalpY #classification #scalability
Large Margin Classifier Based on Affine Hulls (HC, HSY), pp. 21–24.
ICPRICPR-2010-ChenS #classification #nearest neighbour #scalability
Hierarchical Large Margin Nearest Neighbor Classification (QC, SS), pp. 906–909.
ICPRICPR-2010-GriptonL #kernel #semistructured data #using
Kernel Domain Description with Incomplete Data: Using Instance-Specific Margins to Avoid Imputation (AG, WL), pp. 2921–2924.
ICPRICPR-2010-JinHL #multi
Multi-class AdaBoost with Hypothesis Margin (XJ, XH, CLL), pp. 65–68.
ICPRICPR-2010-ShibataKI #classification #nearest neighbour #performance #scalability
Large Margin Discriminant Hashing for Fast k-Nearest Neighbor Classification (TS, SK, SI), pp. 1015–1018.
ICPRICPR-2010-TakahashiK #approximate #classification
Margin Preserved Approximate Convex Hulls for Classification (TT, MK), pp. 4052–4055.
SIGIRSIGIR-2010-GuoS #probability
Probabilistic latent maximal marginal relevance (SG, SS), pp. 833–834.
DACDAC-2009-DasBBFA #design
Addressing design margins through error-tolerant circuits (SD, DB, DMB, KF, RA), pp. 11–12.
ICDARICDAR-2009-DoA #recognition
Maximum Margin Training of Gaussian HMMs for Handwriting Recognition (TMTD, TA), pp. 976–980.
CIKMCIKM-2009-GuZ #clustering
Subspace maximum margin clustering (QG, JZ), pp. 1337–1346.
CIKMCIKM-2009-KurasawaFTA #clustering #metric #similarity
Maximal metric margin partitioning for similarity search indexes (HK, DF, AT, JA), pp. 1887–1890.
CIKMCIKM-2009-QuanzH #learning #scalability
Large margin transductive transfer learning (BQ, JH), pp. 1327–1336.
ICMLICML-2009-DoA #markov #modelling #scalability
Large margin training for hidden Markov models with partially observed states (TMTD, TA), pp. 265–272.
ICMLICML-2009-GiesekePK #clustering #performance
Fast evolutionary maximum margin clustering (FG, TP, OK), pp. 361–368.
ICMLICML-2009-ZhuAX #classification #modelling #named #topic
MedLDA: maximum margin supervised topic models for regression and classification (JZ, AA, EPX), pp. 1257–1264.
KDDKDD-2009-ZhuXZ #markov #network
Primal sparse Max-margin Markov networks (JZ, EPX, BZ), pp. 1047–1056.
MLDMMLDM-2009-LiuYZZZL #classification #scalability
A Large Margin Classifier with Additional Features (XL, JY, EZ, GZ, YZ, ML), pp. 82–95.
RecSysRecSys-2009-WeimerKB #matrix #recommendation
Maximum margin matrix factorization for code recommendation (MW, AK, MB), pp. 309–312.
HPCAHPCA-2009-ReddiGHWSB #predict #using
Voltage emergency prediction: Using signatures to reduce operating margins (VJR, MSG, GHH, GYW, MDS, DMB), pp. 18–29.
CASECASE-2008-Pohjola #adaptation
Adaptive jitter margin PID controller (MP), pp. 534–539.
DACDAC-2008-SenNSC #adaptation #named #power management #process
Pro-VIZOR: process tunable virtually zero margin low power adaptive RF for wireless systems (SS, VN, RS, AC), pp. 492–497.
DATEDATE-2008-XiongZVH
Optimal Margin Computation for At-Speed Test (JX, VZ, CV, PAH), pp. 622–627.
CIKMCIKM-2008-WangCZL #constraints #learning #metric
Semi-supervised metric learning by maximizing constraint margin (FW, SC, CZ, TL), pp. 1457–1458.
ICMLICML-2008-HeigoldDSN #evaluation #recognition #speech
Modified MMI/MPE: a direct evaluation of the margin in speech recognition (GH, TD, RS, HN), pp. 384–391.
ICMLICML-2008-SarawagiG
Accurate max-margin training for structured output spaces (SS, RG), pp. 888–895.
ICMLICML-2008-ZhaoWZ #clustering #multi #performance
Efficient multiclass maximum margin clustering (BZ, FW, CZ), pp. 1248–1255.
ICMLICML-2008-ZhuXZ #markov #network
Laplace maximum margin Markov networks (JZ, EPX, BZ), pp. 1256–1263.
ICPRICPR-2008-JinLH #learning #prototype
Prototype learning with margin-based conditional log-likelihood loss (XJ, CLL, XH), pp. 1–4.
ICPRICPR-2008-YangWRY #feature model
Feature Extraction base on Local Maximum Margin Criterion (WY, JW, MR, JY), pp. 1–4.
RERE-2008-SimAA #experience #requirements #what
Marginal Notes on Amethodical Requirements Engineering: What Experts Learned from Experience (SES, TAA, BAA), pp. 105–114.
DATEDATE-2007-AitkenI #design #embedded #worst-case
Worst-case design and margin for embedded SRAM (RCA, SI), pp. 1289–1294.
CHICHI-2007-LjungbladH
Transfer scenarios: grounding innovation with marginal practices (SL, LEH), pp. 737–746.
ICMLICML-2007-TsampoukaS #algorithm #approximate
Approximate maximum margin algorithms with rules controlled by the number of mistakes (PT, JST), pp. 903–910.
ICMLICML-2007-ZhangTK #clustering
Maximum margin clustering made practical (KZ, IWT, JTK), pp. 1119–1126.
KDDKDD-2007-GuoZXF #data mining #database #learning #mining #multimodal
Enhanced max margin learning on multimodal data mining in a multimedia database (ZG, ZZ, EPX, CF), pp. 340–349.
SACSAC-2007-TanC #classification #using
Using hypothesis margin to boost centroid text classifier (ST, XC), pp. 398–403.
ICMLICML-2006-DeCoste #collaboration #matrix #predict #using
Collaborative prediction using ensembles of Maximum Margin Matrix Factorizations (DD), pp. 249–256.
ICMLICML-2006-RatliffBZ
Maximum margin planning (NDR, JAB, MZ), pp. 729–736.
ICMLICML-2006-ReyzinS #classification #complexity #how
How boosting the margin can also boost classifier complexity (LR, RES), pp. 753–760.
ICMLICML-2006-WarmuthLR #algorithm
Totally corrective boosting algorithms that maximize the margin (MKW, JL, GR), pp. 1001–1008.
ICPRICPR-v1-2006-AdachiKO #estimation #fault #reliability
Reliability index of optical flow that considers error margin of matches and stabilizes camera movement estimation (EA, TK, NO), pp. 699–702.
ICPRICPR-v2-2006-XuWH #algorithm #learning
A maximum margin discriminative learning algorithm for temporal signals (WX, JW, ZH), pp. 460–463.
ICPRICPR-v3-2006-YoshimuraIY #adaptation #correlation #detection
Object Detection with Adaptive Background Model and Margined Sign Cross Correlation (HY, YI, MY), pp. 19–23.
KDDKDD-2006-NathBM #approach #classification #clustering #scalability #using
Clustering based large margin classification: a scalable approach using SOCP formulation (JSN, CB, MNM), pp. 674–679.
ICMLICML-2005-DaumeM #approximate #learning #optimisation #predict #scalability
Learning as search optimization: approximate large margin methods for structured prediction (HDI, DM), pp. 169–176.
ICMLICML-2005-RennieS #collaboration #matrix #performance #predict
Fast maximum margin matrix factorization for collaborative prediction (JDMR, NS), pp. 713–719.
ICMLICML-2005-SunTLW #framework
Unifying the error-correcting and output-code AdaBoost within the margin framework (YS, ST, JL, DW), pp. 872–879.
ICMLICML-2005-TaskarCKG #approach #learning #modelling #predict #scalability
Learning structured prediction models: a large margin approach (BT, VC, DK, CG), pp. 896–903.
ICMLICML-2005-WuSB #classification #scalability
Building Sparse Large Margin Classifiers (MW, BS, GHB), pp. 996–1003.
ICMLICML-2005-ZienC #scalability
Large margin non-linear embedding (AZ, JQC), pp. 1060–1067.
ICMLICML-2004-DekelKS #classification #scalability
Large margin hierarchical classification (OD, JK, YS).
ICMLICML-2004-Gilad-BachrachNT #algorithm #feature model
Margin based feature selection — theory and algorithms (RGB, AN, NT).
ICMLICML-2004-HertzBW #clustering #distance
Boosting margin based distance functions for clustering (TH, ABH, DW).
ICMLICML-2004-HuangYKL #classification #learning #scalability
Learning large margin classifiers locally and globally (KH, HY, IK, MRL).
ICMLICML-2004-KrauseS
Leveraging the margin more carefully (NK, YS).
ICMLICML-2004-LebanonL #classification #multi
Hyperplane margin classifiers on the multinomial manifold (GL, JDL).
ICMLICML-2004-MaheUAPV #graph #kernel
Extensions of marginalized graph kernels (PM, NU, TA, JLP, JPV).
KDDKDD-2004-WuS #information management
Incorporating prior knowledge with weighted margin support vector machines (XW, RKS), pp. 326–333.
KDDKDD-2004-YanZYYLCXFMC #incremental #named
IMMC: incremental maximum margin criterion (JY, BZ, SY, QY, HL, ZC, WX, WF, WYM, QC), pp. 725–730.
CIKMCIKM-2003-YangK #adaptation
Margin-based local regression for adaptive filtering (YY, BK), pp. 191–198.
ICMLICML-2003-GargR #learning
Margin Distribution and Learning (AG, DR), pp. 210–217.
ICMLICML-2003-KashimaTI #graph #kernel
Marginalized Kernels Between Labeled Graphs (HK, KT, AI), pp. 321–328.
ICMLICML-2003-PorterEHT #classification #order #scalability #statistics
Weighted Order Statistic Classifiers with Large Rank-Order Margin (RBP, DE, DRH, JT), pp. 600–607.
ICMLICML-2002-GargHR #bound #on the
On generalization bounds, projection profile, and margin distribution (AG, SHP, DR), pp. 171–178.
ICMLICML-2002-LiZHSK #algorithm
The Perceptron Algorithm with Uneven Margins (YL, HZ, RH, JST, JSK), pp. 379–386.
ICMLICML-2002-MeyerB #scalability #speech #towards
Towards “Large Margin” Speech Recognizers by Boosting and Discriminative Training (CM, PB), pp. 419–426.
ICDARICDAR-2001-FanLW #documentation #image
Marginal Noise Removal of Document Images (KCF, TRL, YKW), pp. 317–321.
ICMLICML-2000-AllweinSS #approach #classification #multi
Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers (ELA, RES, YS), pp. 9–16.
ICMLICML-2000-CampbellCS #classification #learning #query #scalability
Query Learning with Large Margin Classifiers (CC, NC, AJS), pp. 111–118.
ICMLICML-2000-FiechterR #learning #scalability
Learning Subjective Functions with Large Margins (CNF, SR), pp. 287–294.
HCIHCI-CCAD-1999-Pieper
Information environments to overcome isolation, marginalization and stigmatization in an overaging information society (MP), pp. 883–887.
ICMLICML-1999-Harries
Boosting a Strong Learner: Evidence Against the Minimum Margin (MBH), pp. 171–180.
ICMLICML-1999-WuBCS #induction #scalability
Large Margin Trees for Induction and Transduction (DW, KPB, NC, JST), pp. 474–483.
ICMLICML-1998-CristianiniSS #classification #scalability
Bayesian Classifiers Are Large Margin Hyperplanes in a Hilbert Space (NC, JST, PS), pp. 109–117.
ICMLICML-1997-SchapireFBL #effectiveness
Boosting the margin: A new explanation for the effectiveness of voting methods (RES, YF, PB, WSL), pp. 322–330.
ICPRICPR-1996-RaudysD #classification #empirical #fault
Expected error of minimum empirical error and maximal margin classifiers (SR, VD), pp. 875–879.
PODSPODS-1991-MalvestutoMR #2d #information management #statistics
Suppressing Marginal Cells to Protect Sensitive Information in a Two-Dimensional Statistical Table (FMM, MM, MR), pp. 252–258.
SIGMODSIGMOD-1991-NgFS #flexibility
Flexible Buffer Allocation Based on Marginal Gains (RTN, CF, TKS), pp. 387–396.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.