143 papers:
- DATE-2015-ChungSS #identification
- Identifying redundant inter-cell margins and its application to reducing routing congestion (WC, SS, YS), pp. 1659–1664.
- DATE-2015-ConstantinWKCB
- Exploiting dynamic timing margins in microprocessors for frequency-over-scaling with instruction-based clock adjustment (JC, LW, GK, AC, AB), pp. 381–386.
- DATE-2015-GomezPBRBFG #design #energy
- Reducing energy consumption in microcontroller-based platforms with low design margin co-processors (AG, CP, AB, DR, LB, HF, JPdG), pp. 269–272.
- DLT-2015-HanKS #fault
- Generalizations of Code Languages with Marginal Errors (YSH, SKK, KS), pp. 264–275.
- ICML-2015-HayashiMF
- Rebuilding Factorized Information Criterion: Asymptotically Accurate Marginal Likelihood (KH, SiM, RF), pp. 1358–1366.
- ICML-2015-PachecoS #approach #pseudo
- Proteins, Particles, and Pseudo-Max-Marginals: A Submodular Approach (JP, EBS), pp. 2200–2208.
- ICML-2015-YuanHTLC #modelling
- Non-Gaussian Discriminative Factor Models via the Max-Margin Rank-Likelihood (XY, RH, ET, RL, LC), pp. 1254–1263.
- SIGIR-2015-XiaXLGC #evaluation #learning #metric #optimisation
- Learning Maximal Marginal Relevance Model via Directly Optimizing Diversity Evaluation Measures (LX, JX, YL, JG, XC), pp. 113–122.
- DATE-2014-0001GWKAWG #optimisation #performance #runtime
- Exploiting expendable process-margins in DRAMs for run-time performance optimization (KC, SG, CW, MK, BA, NW, KG), pp. 1–6.
- SIGMOD-2014-QardajiYL #named
- PriView: practical differentially private release of marginal contingency tables (WHQ, WY, NL), pp. 1435–1446.
- CHI-2014-DachteraRW #design #industrial #research
- Research on research: design research at the margins: academia, industry and end-users (JD, DWR, VW), pp. 713–722.
- CHI-2014-HoareBJM #online
- Coming in from the margins: amateur musicians in the online age (MH, SB, RJ, NMF), pp. 1295–1304.
- ICML-c1-2014-LajugieBA #clustering #learning #metric #problem
- Large-Margin Metric Learning for Constrained Partitioning Problems (RL, FRB, SA), pp. 297–305.
- ICML-c1-2014-RamdasP #kernel
- Margins, Kernels and Non-linear Smoothed Perceptrons (AR, JP), pp. 244–252.
- ICML-c1-2014-ZhangZZ #infinity #markov #modelling
- Max-Margin Infinite Hidden Markov Models (AZ, JZ, BZ), pp. 315–323.
- ICML-c2-2014-ChenWSB
- Marginalized Denoising Auto-encoders for Nonlinear Representations (MC, KQW, FS, YB), pp. 1476–1484.
- ICML-c2-2014-KarninH #linear
- Hard-Margin Active Linear Regression (ZSK, EH), pp. 883–891.
- ICML-c2-2014-KontorovichW #multi #nearest neighbour
- Maximum Margin Multiclass Nearest Neighbors (AK, RW), pp. 892–900.
- ICML-c2-2014-LiZ0 #learning #multi
- Bayesian Max-margin Multi-Task Learning with Data Augmentation (CL, JZ, JC), pp. 415–423.
- ICML-c2-2014-PingLI
- Marginal Structured SVM with Hidden Variables (WP, QL, ATI), pp. 190–198.
- ICML-c2-2014-QuattoniBCG #sequence
- Spectral Regularization for Max-Margin Sequence Tagging (AQ, BB, XC, AG), pp. 1710–1718.
- ICML-c2-2014-XuTXR #reduction
- Large-margin Weakly Supervised Dimensionality Reduction (CX, DT, CX, YR), pp. 865–873.
- ICPR-2014-Filippone #classification #process #pseudo
- Bayesian Inference for Gaussian Process Classifiers with Annealing and Pseudo-Marginal MCMC (MF), pp. 614–619.
- ICPR-2014-Jain #graph
- Margin Perceptrons for Graphs (BJJ), pp. 3851–3856.
- ICPR-2014-NguyenTHM #classification #novel
- A Novel Sphere-Based Maximum Margin Classification Method (PN, DT, XH, WM), pp. 620–624.
- ICPR-2014-OHarneyMRCSCBF #kernel #learning #multi #pseudo
- Pseudo-Marginal Bayesian Multiple-Class Multiple-Kernel Learning for Neuroimaging Data (ADO, AM, KR, KC, ABS, AC, CB, MF), pp. 3185–3190.
- ICPR-2014-WangGJ #learning #using
- Learning with Hidden Information Using a Max-Margin Latent Variable Model (ZW, TG, QJ), pp. 1389–1394.
- KDD-2014-ZhangZ #scalability
- Large margin distribution machine (TZ, ZHZ), pp. 313–322.
- HIMI-HSM-2013-KarashimaN #behaviour #safety
- Influence of the Safety Margin on Behavior that Violates Rules (MK, HN), pp. 497–506.
- ICML-c1-2013-DoK
- Convex formulations of radius-margin based Support Vector Machines (HD, AK), pp. 169–177.
- ICML-c1-2013-MaatenCTW #learning
- Learning with Marginalized Corrupted Features (LvdM, MC, ST, KQW), pp. 410–418.
- ICML-c1-2013-ZhuCPZ #algorithm #modelling #performance #topic
- Gibbs Max-Margin Topic Models with Fast Sampling Algorithms (JZ, NC, HP, BZ), pp. 124–132.
- ICML-c2-2013-Telgarsky
- Margins, Shrinkage, and Boosting (MT), pp. 307–315.
- ICML-c3-2013-BalasubramanianYL #learning
- Smooth Sparse Coding via Marginal Regression for Learning Sparse Representations (KB, KY, GL), pp. 289–297.
- ICML-c3-2013-CortesMR #classification #kernel #multi
- Multi-Class Classification with Maximum Margin Multiple Kernel (CC, MM, AR), pp. 46–54.
- ICML-c3-2013-HockingRVB #detection #learning #using
- Learning Sparse Penalties for Change-point Detection using Max Margin Interval Regression (TH, GR, JPV, FRB), pp. 172–180.
- ICML-c3-2013-PeharzTP #generative #network
- The Most Generative Maximum Margin Bayesian Networks (RP, ST, FP), pp. 235–243.
- ICML-c3-2013-WangWBLT #learning #multi #taxonomy
- Max-Margin Multiple-Instance Dictionary Learning (XW, BW, XB, WL, ZT), pp. 846–854.
- ICML-c3-2013-XuZZ #matrix #performance
- Fast Max-Margin Matrix Factorization with Data Augmentation (MX, JZ, BZ), pp. 978–986.
- KDD-2013-ZhuZZZ #modelling #scalability #topic
- Scalable inference in max-margin topic models (JZ, XZ, LZ, BZ), pp. 964–972.
- SIGIR-2013-LuWTZHZ #rank #ranking #scalability
- A low rank structural large margin method for cross-modal ranking (XL, FW, ST, ZZ, XH, YZ), pp. 433–442.
- CASE-2012-JeongC #algorithm #independence #quality
- Independent contact region (ICR) based in-hand motion planning algorithm with guaranteed grasp quality margin (HJ, JC), pp. 1089–1094.
- ICALP-v1-2012-ThalerUV #algorithm #performance
- Faster Algorithms for Privately Releasing Marginals (JT, JU, SPV), pp. 810–821.
- CIKM-2012-FanZCCO #clustering
- Maximum margin clustering on evolutionary data (XF, LZ, LC, XC, YSO), pp. 625–634.
- CIKM-2012-XuCWS #representation
- From sBoW to dCoT marginalized encoders for text representation (ZEX, MC, KQW, FS), pp. 1879–1884.
- ICML-2012-ChenXWS #adaptation
- Marginalized Denoising Autoencoders for Domain Adaptation (MC, ZEX, KQW, FS), p. 212.
- ICML-2012-MauaC
- Anytime Marginal MAP Inference (DDM, CPdC), p. 181.
- ICML-2012-PeharzP #learning #network
- Exact Maximum Margin Structure Learning of Bayesian Networks (RP, FP), p. 102.
- ICML-2012-ShiSHH #question #random
- Is margin preserved after random projection? (QS, CS, RH, AvdH), p. 86.
- ICML-2012-ZhangS
- Maximum Margin Output Coding (YZ, JGS), p. 53.
- ICML-2012-Zhu #feature model #modelling #parametricity #predict
- Max-Margin Nonparametric Latent Feature Models for Link Prediction (JZ), p. 154.
- ICPR-2012-ChenYY #analysis #null #recognition #scalability
- Large margin null space discriminant analysis with applications to face recognition (XC, JY, WY), pp. 1679–1682.
- ICPR-2012-SuDRH
- Hypergraph matching based on Marginalized Constrained Compatibility (JS, LD, PR, ERH), pp. 2922–2925.
- KDD-2012-ChattopadhyayWFDPY #probability
- Batch mode active sampling based on marginal probability distribution matching (RC, ZW, WF, ID, SP, JY), pp. 741–749.
- CASE-2011-LeH #analysis #random
- Marginal analysis on binary pairwise Gibbs random fields (TL, CNH), pp. 316–321.
- CIKM-2011-ZhaoYX #independence #information management #learning #web
- Max margin learning on domain-independent web information extraction (BZ, XY, EPX), pp. 1305–1310.
- ICML-2011-Gould #learning #linear #markov #random
- Max-margin Learning for Lower Linear Envelope Potentials in Binary Markov Random Fields (SG), pp. 193–200.
- ICML-2011-KamisettyXL #approximate #correlation #using
- Approximating Correlated Equilibria using Relaxations on the Marginal Polytope (HK, EPX, CJL), pp. 1153–1160.
- ICML-2011-ZhuCX #infinity #kernel #process
- Infinite SVM: a Dirichlet Process Mixture of Large-margin Kernel Machines (JZ, NC, EPX), pp. 617–624.
- KDD-2011-FujimakiSM #modelling #online
- Online heterogeneous mixture modeling with marginal and copula selection (RF, YS, SM), pp. 645–653.
- KDD-2011-ZhangHLSL #approach #learning #multi #scalability
- Multi-view transfer learning with a large margin approach (DZ, JH, YL, LS, RDL), pp. 1208–1216.
- SIGIR-2011-WangZ #e-commerce #recommendation
- Utilizing marginal net utility for recommendation in e-commerce (JW, YZ), pp. 1003–1012.
- ECIR-2010-AgarwalC #algorithm #information retrieval #ranking
- Maximum Margin Ranking Algorithms for Information Retrieval (SA, MC), pp. 332–343.
- ICML-2010-HariharanZVV #classification #multi #scalability
- Large Scale Max-Margin Multi-Label Classification with Priors (BH, LZM, SVNV, MV), pp. 423–430.
- ICML-2010-PanagiotakopoulosT
- The Margin Perceptron with Unlearning (CP, PT), pp. 855–862.
- ICPR-2010-CevikalpY #classification #scalability
- Large Margin Classifier Based on Affine Hulls (HC, HSY), pp. 21–24.
- ICPR-2010-ChenS #classification #nearest neighbour #scalability
- Hierarchical Large Margin Nearest Neighbor Classification (QC, SS), pp. 906–909.
- ICPR-2010-GriptonL #kernel #semistructured data #using
- Kernel Domain Description with Incomplete Data: Using Instance-Specific Margins to Avoid Imputation (AG, WL), pp. 2921–2924.
- ICPR-2010-JinHL #multi
- Multi-class AdaBoost with Hypothesis Margin (XJ, XH, CLL), pp. 65–68.
- ICPR-2010-ShibataKI #classification #nearest neighbour #performance #scalability
- Large Margin Discriminant Hashing for Fast k-Nearest Neighbor Classification (TS, SK, SI), pp. 1015–1018.
- ICPR-2010-TakahashiK #approximate #classification
- Margin Preserved Approximate Convex Hulls for Classification (TT, MK), pp. 4052–4055.
- SIGIR-2010-GuoS #probability
- Probabilistic latent maximal marginal relevance (SG, SS), pp. 833–834.
- DAC-2009-DasBBFA #design
- Addressing design margins through error-tolerant circuits (SD, DB, DMB, KF, RA), pp. 11–12.
- ICDAR-2009-DoA #recognition
- Maximum Margin Training of Gaussian HMMs for Handwriting Recognition (TMTD, TA), pp. 976–980.
- CIKM-2009-GuZ #clustering
- Subspace maximum margin clustering (QG, JZ), pp. 1337–1346.
- CIKM-2009-KurasawaFTA #clustering #metric #similarity
- Maximal metric margin partitioning for similarity search indexes (HK, DF, AT, JA), pp. 1887–1890.
- CIKM-2009-QuanzH #learning #scalability
- Large margin transductive transfer learning (BQ, JH), pp. 1327–1336.
- ICML-2009-DoA #markov #modelling #scalability
- Large margin training for hidden Markov models with partially observed states (TMTD, TA), pp. 265–272.
- ICML-2009-GiesekePK #clustering #performance
- Fast evolutionary maximum margin clustering (FG, TP, OK), pp. 361–368.
- ICML-2009-ZhuAX #classification #modelling #named #topic
- MedLDA: maximum margin supervised topic models for regression and classification (JZ, AA, EPX), pp. 1257–1264.
- KDD-2009-ZhuXZ #markov #network
- Primal sparse Max-margin Markov networks (JZ, EPX, BZ), pp. 1047–1056.
- MLDM-2009-LiuYZZZL #classification #scalability
- A Large Margin Classifier with Additional Features (XL, JY, EZ, GZ, YZ, ML), pp. 82–95.
- RecSys-2009-WeimerKB #matrix #recommendation
- Maximum margin matrix factorization for code recommendation (MW, AK, MB), pp. 309–312.
- HPCA-2009-ReddiGHWSB #predict #using
- Voltage emergency prediction: Using signatures to reduce operating margins (VJR, MSG, GHH, GYW, MDS, DMB), pp. 18–29.
- CASE-2008-Pohjola #adaptation
- Adaptive jitter margin PID controller (MP), pp. 534–539.
- DAC-2008-SenNSC #adaptation #named #power management #process
- Pro-VIZOR: process tunable virtually zero margin low power adaptive RF for wireless systems (SS, VN, RS, AC), pp. 492–497.
- DATE-2008-XiongZVH
- Optimal Margin Computation for At-Speed Test (JX, VZ, CV, PAH), pp. 622–627.
- CIKM-2008-WangCZL #constraints #learning #metric
- Semi-supervised metric learning by maximizing constraint margin (FW, SC, CZ, TL), pp. 1457–1458.
- ICML-2008-HeigoldDSN #evaluation #recognition #speech
- Modified MMI/MPE: a direct evaluation of the margin in speech recognition (GH, TD, RS, HN), pp. 384–391.
- ICML-2008-SarawagiG
- Accurate max-margin training for structured output spaces (SS, RG), pp. 888–895.
- ICML-2008-ZhaoWZ #clustering #multi #performance
- Efficient multiclass maximum margin clustering (BZ, FW, CZ), pp. 1248–1255.
- ICML-2008-ZhuXZ #markov #network
- Laplace maximum margin Markov networks (JZ, EPX, BZ), pp. 1256–1263.
- ICPR-2008-JinLH #learning #prototype
- Prototype learning with margin-based conditional log-likelihood loss (XJ, CLL, XH), pp. 1–4.
- ICPR-2008-YangWRY #feature model
- Feature Extraction base on Local Maximum Margin Criterion (WY, JW, MR, JY), pp. 1–4.
- RE-2008-SimAA #experience #requirements #what
- Marginal Notes on Amethodical Requirements Engineering: What Experts Learned from Experience (SES, TAA, BAA), pp. 105–114.
- DATE-2007-AitkenI #design #embedded #worst-case
- Worst-case design and margin for embedded SRAM (RCA, SI), pp. 1289–1294.
- CHI-2007-LjungbladH
- Transfer scenarios: grounding innovation with marginal practices (SL, LEH), pp. 737–746.
- ICML-2007-TsampoukaS #algorithm #approximate
- Approximate maximum margin algorithms with rules controlled by the number of mistakes (PT, JST), pp. 903–910.
- ICML-2007-ZhangTK #clustering
- Maximum margin clustering made practical (KZ, IWT, JTK), pp. 1119–1126.
- KDD-2007-GuoZXF #data mining #database #learning #mining #multimodal
- Enhanced max margin learning on multimodal data mining in a multimedia database (ZG, ZZ, EPX, CF), pp. 340–349.
- SAC-2007-TanC #classification #using
- Using hypothesis margin to boost centroid text classifier (ST, XC), pp. 398–403.
- ICML-2006-DeCoste #collaboration #matrix #predict #using
- Collaborative prediction using ensembles of Maximum Margin Matrix Factorizations (DD), pp. 249–256.
- ICML-2006-RatliffBZ
- Maximum margin planning (NDR, JAB, MZ), pp. 729–736.
- ICML-2006-ReyzinS #classification #complexity #how
- How boosting the margin can also boost classifier complexity (LR, RES), pp. 753–760.
- ICML-2006-WarmuthLR #algorithm
- Totally corrective boosting algorithms that maximize the margin (MKW, JL, GR), pp. 1001–1008.
- ICPR-v1-2006-AdachiKO #estimation #fault #reliability
- Reliability index of optical flow that considers error margin of matches and stabilizes camera movement estimation (EA, TK, NO), pp. 699–702.
- ICPR-v2-2006-XuWH #algorithm #learning
- A maximum margin discriminative learning algorithm for temporal signals (WX, JW, ZH), pp. 460–463.
- ICPR-v3-2006-YoshimuraIY #adaptation #correlation #detection
- Object Detection with Adaptive Background Model and Margined Sign Cross Correlation (HY, YI, MY), pp. 19–23.
- KDD-2006-NathBM #approach #classification #clustering #scalability #using
- Clustering based large margin classification: a scalable approach using SOCP formulation (JSN, CB, MNM), pp. 674–679.
- ICML-2005-DaumeM #approximate #learning #optimisation #predict #scalability
- Learning as search optimization: approximate large margin methods for structured prediction (HDI, DM), pp. 169–176.
- ICML-2005-RennieS #collaboration #matrix #performance #predict
- Fast maximum margin matrix factorization for collaborative prediction (JDMR, NS), pp. 713–719.
- ICML-2005-SunTLW #framework
- Unifying the error-correcting and output-code AdaBoost within the margin framework (YS, ST, JL, DW), pp. 872–879.
- ICML-2005-TaskarCKG #approach #learning #modelling #predict #scalability
- Learning structured prediction models: a large margin approach (BT, VC, DK, CG), pp. 896–903.
- ICML-2005-WuSB #classification #scalability
- Building Sparse Large Margin Classifiers (MW, BS, GHB), pp. 996–1003.
- ICML-2005-ZienC #scalability
- Large margin non-linear embedding (AZ, JQC), pp. 1060–1067.
- ICML-2004-DekelKS #classification #scalability
- Large margin hierarchical classification (OD, JK, YS).
- ICML-2004-Gilad-BachrachNT #algorithm #feature model
- Margin based feature selection — theory and algorithms (RGB, AN, NT).
- ICML-2004-HertzBW #clustering #distance
- Boosting margin based distance functions for clustering (TH, ABH, DW).
- ICML-2004-HuangYKL #classification #learning #scalability
- Learning large margin classifiers locally and globally (KH, HY, IK, MRL).
- ICML-2004-KrauseS
- Leveraging the margin more carefully (NK, YS).
- ICML-2004-LebanonL #classification #multi
- Hyperplane margin classifiers on the multinomial manifold (GL, JDL).
- ICML-2004-MaheUAPV #graph #kernel
- Extensions of marginalized graph kernels (PM, NU, TA, JLP, JPV).
- KDD-2004-WuS #information management
- Incorporating prior knowledge with weighted margin support vector machines (XW, RKS), pp. 326–333.
- KDD-2004-YanZYYLCXFMC #incremental #named
- IMMC: incremental maximum margin criterion (JY, BZ, SY, QY, HL, ZC, WX, WF, WYM, QC), pp. 725–730.
- CIKM-2003-YangK #adaptation
- Margin-based local regression for adaptive filtering (YY, BK), pp. 191–198.
- ICML-2003-GargR #learning
- Margin Distribution and Learning (AG, DR), pp. 210–217.
- ICML-2003-KashimaTI #graph #kernel
- Marginalized Kernels Between Labeled Graphs (HK, KT, AI), pp. 321–328.
- ICML-2003-PorterEHT #classification #order #scalability #statistics
- Weighted Order Statistic Classifiers with Large Rank-Order Margin (RBP, DE, DRH, JT), pp. 600–607.
- ICML-2002-GargHR #bound #on the
- On generalization bounds, projection profile, and margin distribution (AG, SHP, DR), pp. 171–178.
- ICML-2002-LiZHSK #algorithm
- The Perceptron Algorithm with Uneven Margins (YL, HZ, RH, JST, JSK), pp. 379–386.
- ICML-2002-MeyerB #scalability #speech #towards
- Towards “Large Margin” Speech Recognizers by Boosting and Discriminative Training (CM, PB), pp. 419–426.
- ICDAR-2001-FanLW #documentation #image
- Marginal Noise Removal of Document Images (KCF, TRL, YKW), pp. 317–321.
- ICML-2000-AllweinSS #approach #classification #multi
- Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers (ELA, RES, YS), pp. 9–16.
- ICML-2000-CampbellCS #classification #learning #query #scalability
- Query Learning with Large Margin Classifiers (CC, NC, AJS), pp. 111–118.
- ICML-2000-FiechterR #learning #scalability
- Learning Subjective Functions with Large Margins (CNF, SR), pp. 287–294.
- HCI-CCAD-1999-Pieper
- Information environments to overcome isolation, marginalization and stigmatization in an overaging information society (MP), pp. 883–887.
- ICML-1999-Harries
- Boosting a Strong Learner: Evidence Against the Minimum Margin (MBH), pp. 171–180.
- ICML-1999-WuBCS #induction #scalability
- Large Margin Trees for Induction and Transduction (DW, KPB, NC, JST), pp. 474–483.
- ICML-1998-CristianiniSS #classification #scalability
- Bayesian Classifiers Are Large Margin Hyperplanes in a Hilbert Space (NC, JST, PS), pp. 109–117.
- ICML-1997-SchapireFBL #effectiveness
- Boosting the margin: A new explanation for the effectiveness of voting methods (RES, YF, PB, WSL), pp. 322–330.
- ICPR-1996-RaudysD #classification #empirical #fault
- Expected error of minimum empirical error and maximal margin classifiers (SR, VD), pp. 875–879.
- PODS-1991-MalvestutoMR #2d #information management #statistics
- Suppressing Marginal Cells to Protect Sensitive Information in a Two-Dimensional Statistical Table (FMM, MM, MR), pp. 252–258.
- SIGMOD-1991-NgFS #flexibility
- Flexible Buffer Allocation Based on Marginal Gains (RTN, CF, TKS), pp. 387–396.