Proceedings of the 30th International Conference on Machine Learning, Cycle 1
ICML c1, 2013.
@proceedings{ICML-c1-2013, address = "Atlanta, Georgia, USA", ee = "http://jmlr.org/proceedings/papers/v28/", publisher = "{JMLR.org}", series = "{JMLR Proceedings}", title = "{Proceedings of the 30th International Conference on Machine Learning, Cycle 1}", volume = 28, year = 2013, }
Contents (74 items)
- ICML-c1-2013-SznitmanLFJF #locality #policy
- An Optimal Policy for Target Localization with Application to Electron Microscopy (RS, AL, PIF, BJ, PF), pp. 1–9.
- ICML-c1-2013-MuandetBS #invariant #representation
- Domain Generalization via Invariant Feature Representation (KM, DB, BS), pp. 10–18.
- ICML-c1-2013-BootsG #approach #learning
- A Spectral Learning Approach to Range-Only SLAM (BB, GJG), pp. 19–26.
- ICML-c1-2013-KumarLVV #bound
- Near-Optimal Bounds for Cross-Validation via Loss Stability (RK, DL, SV, AV), pp. 27–35.
- ICML-c1-2013-MehtaG #bound #predict
- Sparsity-Based Generalization Bounds for Predictive Sparse Coding (NAM, AGG), pp. 36–44.
- ICML-c1-2013-ZhangC #analysis #linear
- Sparse Uncorrelated Linear Discriminant Analysis (XZ, DC), pp. 45–52.
- ICML-c1-2013-Lacoste-JulienJSP #coordination #optimisation
- Block-Coordinate Frank-Wolfe Optimization for Structural SVMs (SLJ, MJ, MWS, PP), pp. 53–61.
- ICML-c1-2013-Hennig #optimisation #performance #probability
- Fast Probabilistic Optimization from Noisy Gradients (PH), pp. 62–70.
- ICML-c1-2013-Shamir0 #convergence #optimisation #probability
- Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes (OS, TZ), pp. 71–79.
- ICML-c1-2013-OuyangHTG #multi #probability
- Stochastic Alternating Direction Method of Multipliers (HO, NH, LT, AGG), pp. 80–88.
- ICML-c1-2013-WangX #clustering
- Noisy Sparse Subspace Clustering (YXW, HX), pp. 89–97.
- ICML-c1-2013-WilliamsonDX #markov #modelling #monte carlo #parallel #parametricity
- Parallel Markov Chain Monte Carlo for Nonparametric Mixture Models (SW, AD, EPX), pp. 98–106.
- ICML-c1-2013-GiguereLMS #algorithm #approach #bound #learning #predict
- Risk Bounds and Learning Algorithms for the Regression Approach to Structured Output Prediction (SG, FL, MM, KS), pp. 107–114.
- ICML-c1-2013-BergstraYC #architecture #optimisation
- Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures (JB, DY, DDC), pp. 115–123.
- ICML-c1-2013-ZhuCPZ #algorithm #modelling #performance #topic
- Gibbs Max-Margin Topic Models with Fast Sampling Algorithms (JZ, NC, HP, BZ), pp. 124–132.
- ICML-c1-2013-XuKWC #classification
- Cost-Sensitive Tree of Classifiers (ZEX, MJK, KQW, MC), pp. 133–141.
- ICML-c1-2013-LiLSHD #generative #learning #using
- Learning Hash Functions Using Column Generation (XL, GL, CS, AvdH, ARD), pp. 142–150.
- ICML-c1-2013-ChenWY #combinator #framework #multi
- Combinatorial Multi-Armed Bandit: General Framework and Applications (WC, YW, YY), pp. 151–159.
- ICML-c1-2013-ChenK #adaptation #learning #optimisation
- Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization (YC, AK), pp. 160–168.
- ICML-c1-2013-DoK
- Convex formulations of radius-margin based Support Vector Machines (HD, AK), pp. 169–177.
- ICML-c1-2013-HamiltonFP #modelling #predict
- Modelling Sparse Dynamical Systems with Compressed Predictive State Representations (WLH, MMF, JP), pp. 178–186.
- ICML-c1-2013-MenonTGLK #framework #machine learning #programming
- A Machine Learning Framework for Programming by Example (AKM, OT, SG, BWL, AK), pp. 187–195.
- ICML-c1-2013-GirshickSD
- Discriminatively Activated Sparselets (RBG, HOS, TD), pp. 196–204.
- ICML-c1-2013-PeleTGW #classification #performance
- The Pairwise Piecewise-Linear Embedding for Efficient Non-Linear Classification (OP, BT, AG, MW), pp. 205–213.
- ICML-c1-2013-LiWWT #fixpoint
- Fixed-Point Model For Structured Labeling (QL, JW, DPW, ZT), pp. 214–221.
- ICML-c1-2013-GongGS #adaptation #invariant #learning
- Connecting the Dots with Landmarks: Discriminatively Learning Domain-Invariant Features for Unsupervised Domain Adaptation (BG, KG, FS), pp. 222–230.
- ICML-c1-2013-KumarSK #algorithm #matrix #performance
- Fast Conical Hull Algorithms for Near-separable Non-negative Matrix Factorization (AK, VS, PK), pp. 231–239.
- ICML-c1-2013-HanL13a #analysis #component
- Principal Component Analysis on non-Gaussian Dependent Data (FH, HL), pp. 240–248.
- ICML-c1-2013-AnandkumarHJK #learning #linear #network
- Learning Linear Bayesian Networks with Latent Variables (AA, DH, AJ, SK), pp. 249–257.
- ICML-c1-2013-BubeckWV #identification #multi
- Multiple Identifications in Multi-Armed Bandits (SB, TW, NV), pp. 258–265.
- ICML-c1-2013-CotterSS #learning
- Learning Optimally Sparse Support Vector Machines (AC, SSS, NS), pp. 266–274.
- ICML-c1-2013-HeaukulaniG #modelling #network #probability #social
- Dynamic Probabilistic Models for Latent Feature Propagation in Social Networks (CH, ZG), pp. 275–283.
- ICML-c1-2013-XiangTY #feature model #optimisation #performance
- Efficient Sparse Group Feature Selection via Nonconvex Optimization (SX, XT, JY), pp. 284–292.
- ICML-c1-2013-XiaoG #adaptation #probability #sequence
- Domain Adaptation for Sequence Labeling Tasks with a Probabilistic Language Adaptation Model (MX, YG), pp. 293–301.
- ICML-c1-2013-ChenWC
- Maximum Variance Correction with Application to A* Search (WC, KQW, YC), pp. 302–310.
- ICML-c1-2013-WongAF #adaptation #modelling #visual notation
- Adaptive Sparsity in Gaussian Graphical Models (EW, SPA, PTF), pp. 311–319.
- ICML-c1-2013-GrinbergP #optimisation
- Average Reward Optimization Objective In Partially Observable Domains (YG, DP), pp. 320–328.
- ICML-c1-2013-KolarL #classification #feature model
- Feature Selection in High-Dimensional Classification (MK, HL), pp. 329–337.
- ICML-c1-2013-PareekR
- Human Boosting (HHP, PDR), pp. 338–346.
- ICML-c1-2013-AvronBTZ #analysis #canonical #correlation #performance #reduction
- Efficient Dimensionality Reduction for Canonical Correlation Analysis (HA, CB, ST, AZ), pp. 347–355.
- ICML-c1-2013-WulsinFL #correlation #markov #parsing #process #using
- Parsing epileptic events using a Markov switching process model for correlated time series (DW, EBF, BL), pp. 356–364.
- ICML-c1-2013-RamdasS #optimisation #probability
- Optimal rates for stochastic convex optimization under Tsybakov noise condition (AR, AS), pp. 365–373.
- ICML-c1-2013-AfkanpourGSB #algorithm #kernel #learning #multi #random #scalability
- A Randomized Mirror Descent Algorithm for Large Scale Multiple Kernel Learning (AA, AG, CS, MB), pp. 374–382.
- ICML-c1-2013-ChenC13a
- Noisy and Missing Data Regression: Distribution-Oblivious Support Recovery (YC, CC), pp. 383–391.
- ICML-c1-2013-Suzuki #multi #online
- Dual Averaging and Proximal Gradient Descent for Online Alternating Direction Multiplier Method (TS), pp. 392–400.
- ICML-c1-2013-Shin #design #future of #kernel
- A New Frontier of Kernel Design for Structured Data (KS), pp. 401–409.
- ICML-c1-2013-MaatenCTW #learning
- Learning with Marginalized Corrupted Features (LvdM, MC, ST, KQW), pp. 410–418.
- ICML-c1-2013-KrauseFGI #approximate
- Approximation properties of DBNs with binary hidden units and real-valued visible units (OK, AF, TG, CI), pp. 419–426.
- ICML-c1-2013-Jaggi #optimisation
- Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization (MJ), pp. 427–435.
- ICML-c1-2013-ChenLYY #functional #matrix #using
- General Functional Matrix Factorization Using Gradient Boosting (TC, HL, QY, YY), pp. 436–444.
- ICML-c1-2013-KarbasiSS #learning
- Iterative Learning and Denoising in Convolutional Neural Associative Memories (AK, AHS, AS), pp. 445–453.
- ICML-c1-2013-GilboaSCG #approximate #multi #process #scalability #using
- Scaling Multidimensional Gaussian Processes using Projected Additive Approximations (EG, YS, JPC, EG), pp. 454–461.
- ICML-c1-2013-ZuluagaSKP #learning #multi #optimisation
- Active Learning for Multi-Objective Optimization (MZ, GS, AK, MP), pp. 462–470.
- ICML-c1-2013-KadriGP #approach #kernel #learning
- A Generalized Kernel Approach to Structured Output Learning (HK, MG, PP), pp. 471–479.
- ICML-c1-2013-GonenSS #approach #learning #performance
- Efficient Active Learning of Halfspaces: an Aggressive Approach (AG, SS, SSS), pp. 480–488.
- ICML-c1-2013-OstingBO #ranking #statistics
- Enhanced statistical rankings via targeted data collection (BO, CB, SO), pp. 489–497.
- ICML-c1-2013-0005LSL #feature model #learning #modelling #online
- Online Feature Selection for Model-based Reinforcement Learning (TTN, ZL, TS, TYL), pp. 498–506.
- ICML-c1-2013-RuvoloE #algorithm #learning #named #performance
- ELLA: An Efficient Lifelong Learning Algorithm (PR, EE), pp. 507–515.
- ICML-c1-2013-NarasimhanA #approach #optimisation
- A Structural SVM Based Approach for Optimizing Partial AUC (HN, SA), pp. 516–524.
- ICML-c1-2013-KumarB #bound #graph #learning
- Convex Relaxations for Learning Bounded-Treewidth Decomposable Graphs (KSSK, FRB), pp. 525–533.
- ICML-c1-2013-HoJV #adaptation #classification #crowdsourcing
- Adaptive Task Assignment for Crowdsourced Classification (CJH, SJ, JWV), pp. 534–542.
- ICML-c1-2013-MaillardNOR #bound #learning #representation
- Optimal Regret Bounds for Selecting the State Representation in Reinforcement Learning (OAM, PN, RO, DR), pp. 543–551.
- ICML-c1-2013-BengioMDR
- Better Mixing via Deep Representations (YB, GM, YD, SR), pp. 552–560.
- ICML-c1-2013-ZhaiB #infinity #online
- Online Latent Dirichlet Allocation with Infinite Vocabulary (KZ, JLBG), pp. 561–569.
- ICML-c1-2013-YuCSS #theorem
- Characterizing the Representer Theorem (YY, HC, DS, CS), pp. 570–578.
- ICML-c1-2013-HallW #modelling #online #programming
- Dynamical Models and tracking regret in online convex programming (ECH, RW), pp. 579–587.
- ICML-c1-2013-AbernethyAKD #learning #problem #scalability
- Large-Scale Bandit Problems and KWIK Learning (JA, KA, MK, MD), pp. 588–596.
- ICML-c1-2013-LivniLSNSG #analysis #component
- Vanishing Component Analysis (RL, DL, SS, HN, SSS, AG), pp. 597–605.
- ICML-c1-2013-GolubCY #learning
- Learning an Internal Dynamics Model from Control Demonstration (MG, SC, BY), pp. 606–614.
- ICML-c1-2013-LimLM #learning #metric #robust
- Robust Structural Metric Learning (DL, GRGL, BM), pp. 615–623.
- ICML-c1-2013-BuhlerRSH #clustering #community #detection #set #source code
- Constrained fractional set programs and their application in local clustering and community detection (TB, SSR, SS, MH), pp. 624–632.
- ICML-c1-2013-BalcanBEL #learning #performance
- Efficient Semi-supervised and Active Learning of Disjunctions (NB, CB, SE, YL), pp. 633–641.
- ICML-c1-2013-TorkamaniL #classification
- Convex Adversarial Collective Classification (MT, DL), pp. 642–650.
- ICML-c1-2013-ChevaleyreKZ #classification #linear
- Rounding Methods for Discrete Linear Classification (YC, FK, JDZ), pp. 651–659.
21 ×#learning
11 ×#optimisation
9 ×#performance
7 ×#modelling
7 ×#multi
6 ×#classification
6 ×#probability
5 ×#adaptation
5 ×#algorithm
5 ×#approach
11 ×#optimisation
9 ×#performance
7 ×#modelling
7 ×#multi
6 ×#classification
6 ×#probability
5 ×#adaptation
5 ×#algorithm
5 ×#approach