Proceedings of the 30th International Conference on Machine Learning, Cycle 1
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter


Proceedings of the 30th International Conference on Machine Learning, Cycle 1
ICML c1, 2013.

KER
DBLP
Scholar
?EE?
Full names Links ISxN
@proceedings{ICML-c1-2013,
	address       = "Atlanta, Georgia, USA",
	ee            = "http://jmlr.org/proceedings/papers/v28/",
	publisher     = "{JMLR.org}",
	series        = "{JMLR Proceedings}",
	title         = "{Proceedings of the 30th International Conference on Machine Learning, Cycle 1}",
	volume        = 28,
	year          = 2013,
}

Contents (74 items)

ICML-c1-2013-SznitmanLFJF #locality #policy
An Optimal Policy for Target Localization with Application to Electron Microscopy (RS, AL, PIF, BJ, PF), pp. 1–9.
ICML-c1-2013-MuandetBS #invariant #representation
Domain Generalization via Invariant Feature Representation (KM, DB, BS), pp. 10–18.
ICML-c1-2013-BootsG #approach #learning
A Spectral Learning Approach to Range-Only SLAM (BB, GJG), pp. 19–26.
ICML-c1-2013-KumarLVV #bound
Near-Optimal Bounds for Cross-Validation via Loss Stability (RK, DL, SV, AV), pp. 27–35.
ICML-c1-2013-MehtaG #bound #predict
Sparsity-Based Generalization Bounds for Predictive Sparse Coding (NAM, AGG), pp. 36–44.
ICML-c1-2013-ZhangC #analysis #linear
Sparse Uncorrelated Linear Discriminant Analysis (XZ, DC), pp. 45–52.
ICML-c1-2013-Lacoste-JulienJSP #coordination #optimisation
Block-Coordinate Frank-Wolfe Optimization for Structural SVMs (SLJ, MJ, MWS, PP), pp. 53–61.
ICML-c1-2013-Hennig #optimisation #performance #probability
Fast Probabilistic Optimization from Noisy Gradients (PH), pp. 62–70.
ICML-c1-2013-Shamir0 #convergence #optimisation #probability
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes (OS, TZ), pp. 71–79.
ICML-c1-2013-OuyangHTG #multi #probability
Stochastic Alternating Direction Method of Multipliers (HO, NH, LT, AGG), pp. 80–88.
ICML-c1-2013-WangX #clustering
Noisy Sparse Subspace Clustering (YXW, HX), pp. 89–97.
ICML-c1-2013-WilliamsonDX #markov #modelling #monte carlo #parallel #parametricity
Parallel Markov Chain Monte Carlo for Nonparametric Mixture Models (SW, AD, EPX), pp. 98–106.
ICML-c1-2013-GiguereLMS #algorithm #approach #bound #learning #predict
Risk Bounds and Learning Algorithms for the Regression Approach to Structured Output Prediction (SG, FL, MM, KS), pp. 107–114.
ICML-c1-2013-BergstraYC #architecture #optimisation
Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures (JB, DY, DDC), pp. 115–123.
ICML-c1-2013-ZhuCPZ #algorithm #modelling #performance #topic
Gibbs Max-Margin Topic Models with Fast Sampling Algorithms (JZ, NC, HP, BZ), pp. 124–132.
ICML-c1-2013-XuKWC #classification
Cost-Sensitive Tree of Classifiers (ZEX, MJK, KQW, MC), pp. 133–141.
ICML-c1-2013-LiLSHD #generative #learning #using
Learning Hash Functions Using Column Generation (XL, GL, CS, AvdH, ARD), pp. 142–150.
ICML-c1-2013-ChenWY #combinator #framework #multi
Combinatorial Multi-Armed Bandit: General Framework and Applications (WC, YW, YY), pp. 151–159.
ICML-c1-2013-ChenK #adaptation #learning #optimisation
Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization (YC, AK), pp. 160–168.
ICML-c1-2013-DoK
Convex formulations of radius-margin based Support Vector Machines (HD, AK), pp. 169–177.
ICML-c1-2013-HamiltonFP #modelling #predict
Modelling Sparse Dynamical Systems with Compressed Predictive State Representations (WLH, MMF, JP), pp. 178–186.
ICML-c1-2013-MenonTGLK #framework #machine learning #programming
A Machine Learning Framework for Programming by Example (AKM, OT, SG, BWL, AK), pp. 187–195.
ICML-c1-2013-GirshickSD
Discriminatively Activated Sparselets (RBG, HOS, TD), pp. 196–204.
ICML-c1-2013-PeleTGW #classification #performance
The Pairwise Piecewise-Linear Embedding for Efficient Non-Linear Classification (OP, BT, AG, MW), pp. 205–213.
ICML-c1-2013-LiWWT #fixpoint
Fixed-Point Model For Structured Labeling (QL, JW, DPW, ZT), pp. 214–221.
ICML-c1-2013-GongGS #adaptation #invariant #learning
Connecting the Dots with Landmarks: Discriminatively Learning Domain-Invariant Features for Unsupervised Domain Adaptation (BG, KG, FS), pp. 222–230.
ICML-c1-2013-KumarSK #algorithm #matrix #performance
Fast Conical Hull Algorithms for Near-separable Non-negative Matrix Factorization (AK, VS, PK), pp. 231–239.
ICML-c1-2013-HanL13a #analysis #component
Principal Component Analysis on non-Gaussian Dependent Data (FH, HL), pp. 240–248.
ICML-c1-2013-AnandkumarHJK #learning #linear #network
Learning Linear Bayesian Networks with Latent Variables (AA, DH, AJ, SK), pp. 249–257.
ICML-c1-2013-BubeckWV #identification #multi
Multiple Identifications in Multi-Armed Bandits (SB, TW, NV), pp. 258–265.
ICML-c1-2013-CotterSS #learning
Learning Optimally Sparse Support Vector Machines (AC, SSS, NS), pp. 266–274.
ICML-c1-2013-HeaukulaniG #modelling #network #probability #social
Dynamic Probabilistic Models for Latent Feature Propagation in Social Networks (CH, ZG), pp. 275–283.
ICML-c1-2013-XiangTY #feature model #optimisation #performance
Efficient Sparse Group Feature Selection via Nonconvex Optimization (SX, XT, JY), pp. 284–292.
ICML-c1-2013-XiaoG #adaptation #probability #sequence
Domain Adaptation for Sequence Labeling Tasks with a Probabilistic Language Adaptation Model (MX, YG), pp. 293–301.
ICML-c1-2013-ChenWC
Maximum Variance Correction with Application to A* Search (WC, KQW, YC), pp. 302–310.
ICML-c1-2013-WongAF #adaptation #modelling #visual notation
Adaptive Sparsity in Gaussian Graphical Models (EW, SPA, PTF), pp. 311–319.
ICML-c1-2013-GrinbergP #optimisation
Average Reward Optimization Objective In Partially Observable Domains (YG, DP), pp. 320–328.
ICML-c1-2013-KolarL #classification #feature model
Feature Selection in High-Dimensional Classification (MK, HL), pp. 329–337.
ICML-c1-2013-PareekR
Human Boosting (HHP, PDR), pp. 338–346.
ICML-c1-2013-AvronBTZ #analysis #canonical #correlation #performance #reduction
Efficient Dimensionality Reduction for Canonical Correlation Analysis (HA, CB, ST, AZ), pp. 347–355.
ICML-c1-2013-WulsinFL #correlation #markov #parsing #process #using
Parsing epileptic events using a Markov switching process model for correlated time series (DW, EBF, BL), pp. 356–364.
ICML-c1-2013-RamdasS #optimisation #probability
Optimal rates for stochastic convex optimization under Tsybakov noise condition (AR, AS), pp. 365–373.
ICML-c1-2013-AfkanpourGSB #algorithm #kernel #learning #multi #random #scalability
A Randomized Mirror Descent Algorithm for Large Scale Multiple Kernel Learning (AA, AG, CS, MB), pp. 374–382.
ICML-c1-2013-ChenC13a
Noisy and Missing Data Regression: Distribution-Oblivious Support Recovery (YC, CC), pp. 383–391.
ICML-c1-2013-Suzuki #multi #online
Dual Averaging and Proximal Gradient Descent for Online Alternating Direction Multiplier Method (TS), pp. 392–400.
ICML-c1-2013-Shin #design #future of #kernel
A New Frontier of Kernel Design for Structured Data (KS), pp. 401–409.
ICML-c1-2013-MaatenCTW #learning
Learning with Marginalized Corrupted Features (LvdM, MC, ST, KQW), pp. 410–418.
ICML-c1-2013-KrauseFGI #approximate
Approximation properties of DBNs with binary hidden units and real-valued visible units (OK, AF, TG, CI), pp. 419–426.
ICML-c1-2013-Jaggi #optimisation
Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization (MJ), pp. 427–435.
ICML-c1-2013-ChenLYY #functional #matrix #using
General Functional Matrix Factorization Using Gradient Boosting (TC, HL, QY, YY), pp. 436–444.
ICML-c1-2013-KarbasiSS #learning
Iterative Learning and Denoising in Convolutional Neural Associative Memories (AK, AHS, AS), pp. 445–453.
ICML-c1-2013-GilboaSCG #approximate #multi #process #scalability #using
Scaling Multidimensional Gaussian Processes using Projected Additive Approximations (EG, YS, JPC, EG), pp. 454–461.
ICML-c1-2013-ZuluagaSKP #learning #multi #optimisation
Active Learning for Multi-Objective Optimization (MZ, GS, AK, MP), pp. 462–470.
ICML-c1-2013-KadriGP #approach #kernel #learning
A Generalized Kernel Approach to Structured Output Learning (HK, MG, PP), pp. 471–479.
ICML-c1-2013-GonenSS #approach #learning #performance
Efficient Active Learning of Halfspaces: an Aggressive Approach (AG, SS, SSS), pp. 480–488.
ICML-c1-2013-OstingBO #ranking #statistics
Enhanced statistical rankings via targeted data collection (BO, CB, SO), pp. 489–497.
ICML-c1-2013-0005LSL #feature model #learning #modelling #online
Online Feature Selection for Model-based Reinforcement Learning (TTN, ZL, TS, TYL), pp. 498–506.
ICML-c1-2013-RuvoloE #algorithm #learning #named #performance
ELLA: An Efficient Lifelong Learning Algorithm (PR, EE), pp. 507–515.
ICML-c1-2013-NarasimhanA #approach #optimisation
A Structural SVM Based Approach for Optimizing Partial AUC (HN, SA), pp. 516–524.
ICML-c1-2013-KumarB #bound #graph #learning
Convex Relaxations for Learning Bounded-Treewidth Decomposable Graphs (KSSK, FRB), pp. 525–533.
ICML-c1-2013-HoJV #adaptation #classification #crowdsourcing
Adaptive Task Assignment for Crowdsourced Classification (CJH, SJ, JWV), pp. 534–542.
ICML-c1-2013-MaillardNOR #bound #learning #representation
Optimal Regret Bounds for Selecting the State Representation in Reinforcement Learning (OAM, PN, RO, DR), pp. 543–551.
ICML-c1-2013-BengioMDR
Better Mixing via Deep Representations (YB, GM, YD, SR), pp. 552–560.
ICML-c1-2013-ZhaiB #infinity #online
Online Latent Dirichlet Allocation with Infinite Vocabulary (KZ, JLBG), pp. 561–569.
ICML-c1-2013-YuCSS #theorem
Characterizing the Representer Theorem (YY, HC, DS, CS), pp. 570–578.
ICML-c1-2013-HallW #modelling #online #programming
Dynamical Models and tracking regret in online convex programming (ECH, RW), pp. 579–587.
ICML-c1-2013-AbernethyAKD #learning #problem #scalability
Large-Scale Bandit Problems and KWIK Learning (JA, KA, MK, MD), pp. 588–596.
ICML-c1-2013-LivniLSNSG #analysis #component
Vanishing Component Analysis (RL, DL, SS, HN, SSS, AG), pp. 597–605.
ICML-c1-2013-GolubCY #learning
Learning an Internal Dynamics Model from Control Demonstration (MG, SC, BY), pp. 606–614.
ICML-c1-2013-LimLM #learning #metric #robust
Robust Structural Metric Learning (DL, GRGL, BM), pp. 615–623.
ICML-c1-2013-BuhlerRSH #clustering #community #detection #set #source code
Constrained fractional set programs and their application in local clustering and community detection (TB, SSR, SS, MH), pp. 624–632.
ICML-c1-2013-BalcanBEL #learning #performance
Efficient Semi-supervised and Active Learning of Disjunctions (NB, CB, SE, YL), pp. 633–641.
ICML-c1-2013-TorkamaniL #classification
Convex Adversarial Collective Classification (MT, DL), pp. 642–650.
ICML-c1-2013-ChevaleyreKZ #classification #linear
Rounding Methods for Discrete Linear Classification (YC, FK, JDZ), pp. 651–659.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.