Travelled to:
1 × Ireland
1 × Portugal
1 × Russia
1 × Singapore
1 × United Kingdom
3 × China
3 × USA
Collaborated with:
T.Liu T.Wang H.Li J.Yan Z.Ma Y.Zhang K.Hui B.He T.Luo D.Shen W.Wei L.Yang L.Qi Y.Zhao X.Zheng Q.Cheng W.Ma W.Zhang Y.Yu X.Yuan C.Xu Y.Bai J.Bian G.Wang X.Liu Y.Liu S.He J.Tang N.Liu Y.Shen S.Guo S.Yan M.Zhang
Talks about:
graph (4) rank (3) framework (2) structur (2) sponsor (2) general (2) analysi (2) search (2) import (2) learn (2)
Person: Bin Gao
DBLP: Gao:Bin
Contributed to:
Wrote 11 papers:
- CIKM-2014-XuBBGWLL #framework #named #word
- RC-NET: A General Framework for Incorporating Knowledge into Word Representations (CX, YB, JB, BG, GW, XL, TYL), pp. 1219–1228.
- ECIR-2013-HuiGHL #analysis #keyword
- Sponsored Search Ad Selection by Keyword Structure Analysis (KH, BG, BH, TL), pp. 230–241.
- SIGIR-2013-GaoYSL #internet #theory and practice
- Internet advertising: theory and practice (BG, JY, DS, TYL), p. 1135.
- KDD-2012-ZhangZGYYL #optimisation
- Joint optimization of bid and budget allocation in sponsored search (WZ, YZ, BG, YY, XY, TYL), pp. 1177–1185.
- SIGIR-2012-GaoWL #graph #information retrieval #learning #mining #scalability
- Large-scale graph mining and learning for information retrieval (BG, TW, TYL), pp. 1194–1195.
- CIKM-2011-TangLYSGGYZ #behaviour #learning #rank
- Learning to rank audience for behavioral targeting in display ads (JT, NL, JY, YS, SG, BG, SY, MZ), pp. 605–610.
- KDD-2011-GaoLWWL #graph #metadata #ranking #scalability
- Semi-supervised ranking on very large graphs with rich metadata (BG, TYL, WW, TW, HL), pp. 96–104.
- CIKM-2009-GaoLMWL #framework #markov
- A general markov framework for page importance computation (BG, TYL, ZM, TW, HL), pp. 1835–1838.
- SIGIR-2008-LiuGLZMHL #named #rank #web
- BrowseRank: letting web users vote for page importance (YL, BG, TYL, YZ, ZM, SH, HL), pp. 451–458.
- CIKM-2007-YangQZGL #analysis #graph #using #web
- Link analysis using time series of web graphs (LY, LQ, YPZ, BG, TYL), pp. 1011–1014.
- KDD-2005-GaoLZCM #clustering #consistency #graph #higher-order #semistructured data
- Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering (BG, TYL, XZ, QC, WYM), pp. 41–50.