Travelled to:
1 × Australia
1 × France
10 × USA
2 × China
Collaborated with:
X.Wang W.Fan J.Ye B.Qian S.S.Ravi M.Ester R.Chattopadhyay S.Panchanathan A.Gress ∅ Z.Qi G.Paul S.Gilpin R.Ge W.Jin A.Grover A.Satyanarayana G.K.Tayi F.Wang P.Zhang C.Kuo P.B.Walker O.T.Carmichael S.Yang Q.Sun S.Ji P.Wonka Z.Wang M.S.Hossain S.Tadepalli L.T.Watson R.F.Helm N.Ramakrishnan
Talks about:
cluster (10) data (4) constraint (3) framework (3) flexibl (3) effici (3) constrain (2) approach (2) select (2) applic (2)
Person: Ian Davidson
DBLP: Davidson:Ian
Contributed to:
Wrote 19 papers:
- KDD-2015-KuoWWCYD #graph #multi #segmentation
- Unified and Contrasting Cuts in Multiple Graphs: Application to Medical Imaging Segmentation (CTK, XW, PBW, OTC, JY, ID), pp. 617–626.
- KDD-2015-YangSJWDY #learning #visual notation
- Structural Graphical Lasso for Learning Mouse Brain Connectivity (SY, QS, SJ, PW, ID, JY), pp. 1385–1394.
- CIKM-2014-GressD #flexibility #framework #semistructured data
- A Flexible Framework for Projecting Heterogeneous Data (AG, ID), pp. 1169–1178.
- KDD-2014-WangZQWD #multi #predict #risk management
- Clinical risk prediction with multilinear sparse logistic regression (FW, PZ, BQ, XW, ID), pp. 145–154.
- CIKM-2013-GilpinQD #clustering #dataset #performance #scalability
- Efficient hierarchical clustering of large high dimensional datasets (SG, BQ, ID), pp. 1371–1380.
- ICML-c3-2013-ChattopadhyayFDPY #learning
- Joint Transfer and Batch-mode Active Learning (RC, WF, ID, SP, JY), pp. 253–261.
- CIKM-2012-WangQD #automation #clustering #documentation #using
- Improving document clustering using automated machine translation (XW, BQ, ID), pp. 645–653.
- KDD-2012-ChattopadhyayWFDPY #probability
- Batch mode active sampling based on marginal probability distribution matching (RC, ZW, WF, ID, SP, JY), pp. 741–749.
- KDD-2012-Davidson #clustering #comprehension #constraints
- Two approaches to understanding when constraints help clustering (ID), pp. 1312–1320.
- KDD-2011-ChattopadhyayYPFD #adaptation #detection #multi
- Multi-source domain adaptation and its application to early detection of fatigue (RC, JY, SP, WF, ID), pp. 717–725.
- KDD-2010-HossainTWDHR #clustering
- Unifying dependent clustering and disparate clustering for non-homogeneous data (MSH, ST, LTW, ID, RFH, NR), pp. 593–602.
- KDD-2010-WangD #clustering #flexibility
- Flexible constrained spectral clustering (XW, ID), pp. 563–572.
- KDD-2009-QiD #clustering #flexibility #framework
- A principled and flexible framework for finding alternative clusterings (ZQ, ID), pp. 717–726.
- ICML-2007-DavidsonR #clustering #constraints
- Intractability and clustering with constraints (ID, SSR), pp. 201–208.
- KDD-2007-DavidsonRE #clustering #incremental #performance
- Efficient incremental constrained clustering (ID, SSR, ME), pp. 240–249.
- KDD-2007-GeEJD #clustering #constraints
- Constraint-driven clustering (RG, ME, WJ, ID), pp. 320–329.
- KDD-2006-FanD #bias #classification #framework #performance #testing
- Reverse testing: an efficient framework to select amongst classifiers under sample selection bias (WF, ID), pp. 147–156.
- KDD-2004-DavidsonGST #algorithm #approach #data mining #matrix #mining #quality
- A general approach to incorporate data quality matrices into data mining algorithms (ID, AG, AS, GKT), pp. 794–798.
- KDD-2004-DavidsonP #image
- Locating secret messages in images (ID, GP), pp. 545–550.